Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,147 Bytes
cba094e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import random
import PIL.Image
import cv2
import numpy as np
import torch
from diffusers import PNDMScheduler, DDIMScheduler
from loguru import logger
from transformers import FeatureExtractionMixin, ImageFeatureExtractionMixin
from lama_cleaner.helper import norm_img
from lama_cleaner.model.base import InpaintModel
from lama_cleaner.schema import Config, SDSampler
#
#
# def preprocess_image(image):
# w, h = image.size
# w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
# image = image.resize((w, h), resample=PIL.Image.LANCZOS)
# image = np.array(image).astype(np.float32) / 255.0
# image = image[None].transpose(0, 3, 1, 2)
# image = torch.from_numpy(image)
# # [-1, 1]
# return 2.0 * image - 1.0
#
#
# def preprocess_mask(mask):
# mask = mask.convert("L")
# w, h = mask.size
# w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
# mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
# mask = np.array(mask).astype(np.float32) / 255.0
# mask = np.tile(mask, (4, 1, 1))
# mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
# mask = 1 - mask # repaint white, keep black
# mask = torch.from_numpy(mask)
# return mask
class DummyFeatureExtractorOutput:
def __init__(self, pixel_values):
self.pixel_values = pixel_values
def to(self, device):
return self
class DummyFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def __call__(self, *args, **kwargs):
return DummyFeatureExtractorOutput(torch.empty(0, 3))
class DummySafetyChecker:
def __init__(self, *args, **kwargs):
pass
def __call__(self, clip_input, images):
return images, False
class SD(InpaintModel):
pad_mod = 64 # current diffusers only support 64 https://github.com/huggingface/diffusers/pull/505
min_size = 512
def init_model(self, device: torch.device, **kwargs):
from .sd_pipeline import StableDiffusionInpaintPipeline
model_kwargs = {"local_files_only": kwargs['sd_run_local']}
if kwargs['sd_disable_nsfw']:
logger.info("Disable Stable Diffusion Model NSFW checker")
model_kwargs.update(dict(
feature_extractor=DummyFeatureExtractor(),
safety_checker=DummySafetyChecker(),
))
self.model = StableDiffusionInpaintPipeline.from_pretrained(
self.model_id_or_path,
revision="fp16" if torch.cuda.is_available() else "main",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_auth_token=kwargs["hf_access_token"],
**model_kwargs
)
# https://huggingface.co/docs/diffusers/v0.3.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
self.model.enable_attention_slicing()
self.model = self.model.to(device)
if kwargs['sd_cpu_textencoder']:
logger.info("Run Stable Diffusion TextEncoder on CPU")
self.model.text_encoder = self.model.text_encoder.to(torch.device('cpu'), non_blocking=True)
self.model.text_encoder = self.model.text_encoder.to(torch.float32, non_blocking=True )
self.callbacks = kwargs.pop("callbacks", None)
@torch.cuda.amp.autocast()
def forward(self, image, mask, config: Config):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
return: BGR IMAGE
"""
# image = norm_img(image) # [0, 1]
# image = image * 2 - 1 # [0, 1] -> [-1, 1]
# resize to latent feature map size
# h, w = mask.shape[:2]
# mask = cv2.resize(mask, (h // 8, w // 8), interpolation=cv2.INTER_AREA)
# mask = norm_img(mask)
#
# image = torch.from_numpy(image).unsqueeze(0).to(self.device)
# mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
if config.sd_sampler == SDSampler.ddim:
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
elif config.sd_sampler == SDSampler.pndm:
PNDM_kwargs = {
"tensor_format": "pt",
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"beta_end": 0.012,
"num_train_timesteps": 1000,
"skip_prk_steps": True,
}
scheduler = PNDMScheduler(**PNDM_kwargs)
else:
raise ValueError(config.sd_sampler)
self.model.scheduler = scheduler
seed = config.sd_seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if config.sd_mask_blur != 0:
k = 2 * config.sd_mask_blur + 1
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
output = self.model(
prompt=config.prompt,
init_image=PIL.Image.fromarray(image),
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
strength=config.sd_strength,
num_inference_steps=config.sd_steps,
guidance_scale=config.sd_guidance_scale,
output_type="np.array",
callbacks=self.callbacks,
).images[0]
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
@torch.no_grad()
def __call__(self, image, mask, config: Config):
"""
images: [H, W, C] RGB, not normalized
masks: [H, W]
return: BGR IMAGE
"""
img_h, img_w = image.shape[:2]
# boxes = boxes_from_mask(mask)
if config.use_croper:
logger.info("use croper")
l, t, w, h = (
config.croper_x,
config.croper_y,
config.croper_width,
config.croper_height,
)
r = l + w
b = t + h
l = max(l, 0)
r = min(r, img_w)
t = max(t, 0)
b = min(b, img_h)
crop_img = image[t:b, l:r, :]
crop_mask = mask[t:b, l:r]
crop_image = self._pad_forward(crop_img, crop_mask, config)
inpaint_result = image[:, :, ::-1]
inpaint_result[t:b, l:r, :] = crop_image
else:
inpaint_result = self._pad_forward(image, mask, config)
return inpaint_result
@staticmethod
def is_downloaded() -> bool:
# model will be downloaded when app start, and can't switch in frontend settings
return True
class SD14(SD):
model_id_or_path = "CompVis/stable-diffusion-v1-4"
class SD15(SD):
model_id_or_path = "CompVis/stable-diffusion-v1-5"
|