Spaces:
Runtime error
Runtime error
File size: 2,974 Bytes
d347764 59e324f 5b3b3e6 59e324f d347764 1b9a7a0 d347764 1b9a7a0 d347764 2650c17 1b9a7a0 d347764 2bfd5b0 1b9a7a0 d347764 f805e49 1b9a7a0 f805e49 c737803 d347764 226ec3a d347764 f805e49 d347764 c737803 3946ba6 c737803 d347764 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset, Audio
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor, AutomaticSpeechRecognitionPipeline, WhisperForConditionalGeneration
from dataclasses import dataclass
import re
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3", device=device)
# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("Daniel981215/speecht5_tts_finetuned_voxpopuli_es").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
replacements = {'á': 'a', 'é': 'e', 'í': 'i', 'ó': 'o', 'ú': 'u', '¿': '', '?': '', '1': 'uno', '2':'dos','3':'tres', '4':'cuatro', '5':'cinco', '6': 'seis', '7':'siete', '8':'ocho', '9':'nueve', '0':'cero'}
def normalize_replace_string(input_string, replacements):
normalized_string = re.sub(r'\s+', ' ', input_string).strip().lower()
for old, new in replacements.items():
normalized_string = normalized_string.replace(old, new)
return normalized_string
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es"})
output_txt = normalize_replace_string(outputs["text"], replacements)
return output_txt
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
speech-to-speech translation (STST)
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()
|