Spaces:
Sleeping
Sleeping
import numpy as np | |
from sklearn.svm import LinearSVC | |
from skimage.feature import fisher_vector, learn_gmm | |
import numpy as np | |
import random | |
import os | |
from pathlib import Path | |
from data_utils.data_tribology import TribologyDataset | |
from utils.arg_utils import get_args | |
from utils.experiment_utils import get_name, get_logger, SIFT_extraction, conduct_voting | |
from utils.visualization_utils import plot_confusion_matrix | |
from vis_confusion_mtx import generate_confusion_matrix | |
def main(args): | |
'''Reproducibility''' | |
SEED = args.seed | |
random.seed(SEED) | |
np.random.seed(SEED) | |
'''Folder Creation''' | |
basepath=os.getcwd() | |
experiment_dir = Path(os.path.join(basepath,'experiments',args.model,args.resolution,args.magnification,args.modality,args.vote)) | |
experiment_dir.mkdir(parents=True, exist_ok=True) | |
checkpoint_dir = Path(os.path.join(experiment_dir,'checkpoints')) | |
checkpoint_dir.mkdir(parents=True, exist_ok=True) | |
'''Logging''' | |
model_name = get_name(args) | |
print(model_name, 'STARTED', flush=True) | |
logger = get_logger(experiment_dir, model_name) | |
'''Data Loading''' | |
train_csv_path = f"./LUA_Dataset/CSV/{args.resolution}_{args.magnification}_6w_train.csv" | |
test_csv_path = f"./LUA_Dataset/CSV/{args.resolution}_{args.magnification}_6w_test.csv" | |
img_path = f"./LUA_Dataset/{args.resolution}/{args.magnification}/{args.modality}" | |
BATCHSIZE = args.batch_size | |
train_dataset = TribologyDataset(csv_path = train_csv_path, img_path = img_path) | |
test_dataset = TribologyDataset(csv_path = test_csv_path, img_path = img_path) | |
# prepare the data augmentation | |
means, stds = train_dataset.get_statistics() | |
train_dataset.prepare_transform(means, stds, mode='train') | |
test_dataset.prepare_transform(means, stds, mode='test') | |
VALID_RATIO = 0.1 | |
num_train = len(train_dataset) | |
num_valid = int(VALID_RATIO * num_train) | |
# train_dataset, valid_dataset = data.random_split(train_dataset, [num_train - num_valid, num_valid]) | |
# logger.info(f'Number of training samples: {len(train_dataset)}') | |
# logger.info(f'Number of validation samples: {len(valid_dataset)}') | |
train_names, train_descriptor, train_labels = SIFT_extraction(train_dataset) | |
test_names, test_descriptor, test_labels = SIFT_extraction(test_dataset) | |
# val_descriptor, val_labels = SIFT_extraction(valid_dataset) | |
print('DATA LOADED', flush=True) | |
print('TRAINING STARTED', flush=True) | |
# Train a K-mode GMM | |
k = 16 | |
gmm = learn_gmm(train_descriptor, n_modes=k) | |
# Compute the Fisher vectors | |
training_fvs = np.array([ | |
fisher_vector(descriptor_mat, gmm) | |
for descriptor_mat in train_descriptor | |
]) | |
testing_fvs = np.array([ | |
fisher_vector(descriptor_mat, gmm) | |
for descriptor_mat in test_descriptor | |
]) | |
svm = LinearSVC().fit(training_fvs, train_labels) | |
logger.info('-------------------End of Training-------------------') | |
print('TRAINING DONE') | |
logger.info('-------------------Beginning of Testing-------------------') | |
print('TESTING STARTED') | |
predictions = svm.predict(testing_fvs) | |
conduct_voting(test_names, predictions) | |
plot_confusion_matrix('visualization_results/SIFT+FVs_confusion_mtx.png', predictions, test_labels,classes=["ANTLER", "BEECHWOOD", "BEFOREUSE", "BONE", "IVORY","SPRUCEWOOD"]) | |
correct = 0 | |
for i in range(len(predictions)): | |
if predictions[i] == test_labels[i]: | |
correct += 1 | |
test_acc = float(correct)/len(predictions) | |
logger.info(f'Test Acc @1: {test_acc * 100:6.2f}%') | |
logger.info('-------------------End of Testing-------------------') | |
print('TESTING DONE') | |
if __name__ == '__main__': | |
args = get_args() | |
main(args) | |