import torch import os from pathlib import Path from data_utils.data_tribology import TribologyDataset from utils.experiment_utils import get_model, get_prediction from utils.arg_utils import get_args from utils.visualization_utils import plot_confusion_matrix def generate_confusion_matrix(image_name, model, iterator, device): labels, predictions = get_prediction(model, iterator, device) plot_confusion_matrix('visualization_results/'+image_name+'_confusion_mtx.png', labels, predictions, classes=["ANTLER", "BEECHWOOD", "BEFOREUSE", "BONE", "IVORY","SPRUCEWOOD"]) def main(args): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = get_model(args) basepath=os.getcwd() experiment_dir = Path(os.path.join(basepath,'experiments',args.model,args.resolution,args.magnification,args.modality,args.pretrained,args.frozen,args.vote)) if args.model == 'ViT': experiment_dir = Path(os.path.join(basepath,'experiments','ViT_H',args.resolution,args.magnification,args.modality,args.pretrained,args.frozen,args.vote)) checkpoint_dir = Path(os.path.join(experiment_dir,'checkpoints')) checkpoint_path = checkpoint_dir / f'epoch{str(args.epochs)}.pth' model.load_state_dict(torch.load(checkpoint_path)) model = model.to(device) train_csv_path = f"./LUA_Dataset/CSV/{args.resolution}_{args.magnification}_6w_train.csv" test_csv_path = f"./LUA_Dataset/CSV/{args.resolution}_{args.magnification}_6w_test.csv" img_path = f"./LUA_Dataset/{args.resolution}/{args.magnification}/{args.modality}" BATCHSIZE = args.batch_size train_dataset = TribologyDataset(csv_path = train_csv_path, img_path = img_path) test_dataset = TribologyDataset(csv_path = test_csv_path, img_path = img_path) means, stds = train_dataset.get_statistics() train_dataset.prepare_transform(means, stds, mode='train') test_dataset.prepare_transform(means, stds, mode='test') test_iterator = torch.utils.data.DataLoader(test_dataset, batch_size=BATCHSIZE, num_workers=4, shuffle=False, pin_memory=True, drop_last=False) generate_confusion_matrix(args.model, model, test_iterator, device) if __name__ == "__main__": args = get_args() main(args)