|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import functools |
|
import logging |
|
import pathlib |
|
import sys |
|
import tempfile |
|
import time |
|
from typing import Any |
|
|
|
import gradio as gr |
|
import imageio.v2 as iio |
|
import numpy as np |
|
import torch |
|
from icetk import IceTokenizer |
|
from SwissArmyTransformer import get_args |
|
from SwissArmyTransformer.arguments import set_random_seed |
|
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy |
|
from SwissArmyTransformer.resources import auto_create |
|
|
|
app_dir = pathlib.Path(__file__).parent |
|
submodule_dir = app_dir / 'CogVideo' |
|
sys.path.insert(0, submodule_dir.as_posix()) |
|
|
|
from coglm_strategy import CoglmStrategy |
|
from models.cogvideo_cache_model import CogVideoCacheModel |
|
from sr_pipeline import DirectSuperResolution |
|
|
|
formatter = logging.Formatter( |
|
'[%(asctime)s] %(name)s %(levelname)s: %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S') |
|
stream_handler = logging.StreamHandler(stream=sys.stdout) |
|
stream_handler.setLevel(logging.INFO) |
|
stream_handler.setFormatter(formatter) |
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.INFO) |
|
logger.propagate = False |
|
logger.addHandler(stream_handler) |
|
|
|
ICETK_MODEL_DIR = app_dir / 'icetk_models' |
|
|
|
|
|
def get_masks_and_position_ids_stage1(data, textlen, framelen): |
|
|
|
tokens = data |
|
seq_length = len(data[0]) |
|
|
|
attention_mask = torch.ones((1, textlen + framelen, textlen + framelen), |
|
device=data.device) |
|
attention_mask[:, :textlen, textlen:] = 0 |
|
attention_mask[:, textlen:, textlen:].tril_() |
|
attention_mask.unsqueeze_(1) |
|
|
|
position_ids = torch.zeros(seq_length, |
|
dtype=torch.long, |
|
device=data.device) |
|
torch.arange(textlen, |
|
out=position_ids[:textlen], |
|
dtype=torch.long, |
|
device=data.device) |
|
torch.arange(512, |
|
512 + seq_length - textlen, |
|
out=position_ids[textlen:], |
|
dtype=torch.long, |
|
device=data.device) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
return tokens, attention_mask, position_ids |
|
|
|
|
|
def get_masks_and_position_ids_stage2(data, textlen, framelen): |
|
|
|
tokens = data |
|
seq_length = len(data[0]) |
|
|
|
|
|
attention_mask = torch.ones((1, textlen + framelen, textlen + framelen), |
|
device=data.device) |
|
attention_mask[:, :textlen, textlen:] = 0 |
|
attention_mask[:, textlen:, textlen:].tril_() |
|
attention_mask.unsqueeze_(1) |
|
|
|
|
|
position_ids = torch.zeros(seq_length, |
|
dtype=torch.long, |
|
device=data.device) |
|
torch.arange(textlen, |
|
out=position_ids[:textlen], |
|
dtype=torch.long, |
|
device=data.device) |
|
frame_num = (seq_length - textlen) // framelen |
|
assert frame_num == 5 |
|
torch.arange(512, |
|
512 + framelen, |
|
out=position_ids[textlen:textlen + framelen], |
|
dtype=torch.long, |
|
device=data.device) |
|
torch.arange(512 + framelen * 2, |
|
512 + framelen * 3, |
|
out=position_ids[textlen + framelen:textlen + framelen * 2], |
|
dtype=torch.long, |
|
device=data.device) |
|
torch.arange(512 + framelen * (frame_num - 1), |
|
512 + framelen * frame_num, |
|
out=position_ids[textlen + framelen * 2:textlen + |
|
framelen * 3], |
|
dtype=torch.long, |
|
device=data.device) |
|
torch.arange(512 + framelen * 1, |
|
512 + framelen * 2, |
|
out=position_ids[textlen + framelen * 3:textlen + |
|
framelen * 4], |
|
dtype=torch.long, |
|
device=data.device) |
|
torch.arange(512 + framelen * 3, |
|
512 + framelen * 4, |
|
out=position_ids[textlen + framelen * 4:textlen + |
|
framelen * 5], |
|
dtype=torch.long, |
|
device=data.device) |
|
|
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
return tokens, attention_mask, position_ids |
|
|
|
|
|
def my_update_mems(hiddens, mems_buffers, mems_indexs, |
|
limited_spatial_channel_mem, text_len, frame_len): |
|
if hiddens is None: |
|
return None, mems_indexs |
|
mem_num = len(hiddens) |
|
ret_mem = [] |
|
with torch.no_grad(): |
|
for id in range(mem_num): |
|
if hiddens[id][0] is None: |
|
ret_mem.append(None) |
|
else: |
|
if id == 0 and limited_spatial_channel_mem and mems_indexs[ |
|
id] + hiddens[0][0].shape[1] >= text_len + frame_len: |
|
if mems_indexs[id] == 0: |
|
for layer, hidden in enumerate(hiddens[id]): |
|
mems_buffers[id][ |
|
layer, :, :text_len] = hidden.expand( |
|
mems_buffers[id].shape[1], -1, |
|
-1)[:, :text_len] |
|
new_mem_len_part2 = (mems_indexs[id] + |
|
hiddens[0][0].shape[1] - |
|
text_len) % frame_len |
|
if new_mem_len_part2 > 0: |
|
for layer, hidden in enumerate(hiddens[id]): |
|
mems_buffers[id][ |
|
layer, :, text_len:text_len + |
|
new_mem_len_part2] = hidden.expand( |
|
mems_buffers[id].shape[1], -1, |
|
-1)[:, -new_mem_len_part2:] |
|
mems_indexs[id] = text_len + new_mem_len_part2 |
|
else: |
|
for layer, hidden in enumerate(hiddens[id]): |
|
mems_buffers[id][layer, :, |
|
mems_indexs[id]:mems_indexs[id] + |
|
hidden.shape[1]] = hidden.expand( |
|
mems_buffers[id].shape[1], -1, -1) |
|
mems_indexs[id] += hidden.shape[1] |
|
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]]) |
|
return ret_mem, mems_indexs |
|
|
|
|
|
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len): |
|
|
|
if total_len < text_len: |
|
return None |
|
return (total_len - text_len) // frame_len * frame_len + text_len |
|
|
|
|
|
def my_filling_sequence( |
|
model, |
|
tokenizer, |
|
args, |
|
seq, |
|
batch_size, |
|
get_masks_and_position_ids, |
|
text_len, |
|
frame_len, |
|
strategy=BaseStrategy(), |
|
strategy2=BaseStrategy(), |
|
mems=None, |
|
log_text_attention_weights=0, |
|
mode_stage1=True, |
|
enforce_no_swin=False, |
|
guider_seq=None, |
|
guider_text_len=0, |
|
guidance_alpha=1, |
|
limited_spatial_channel_mem=False, |
|
**kw_args): |
|
''' |
|
seq: [2, 3, 5, ..., -1(to be generated), -1, ...] |
|
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size] |
|
cache, should be first mems.shape[1] parts of context_tokens. |
|
mems are the first-level citizens here, but we don't assume what is memorized. |
|
input mems are used when multi-phase generation. |
|
''' |
|
if guider_seq is not None: |
|
logger.debug('Using Guidance In Inference') |
|
if limited_spatial_channel_mem: |
|
logger.debug("Limit spatial-channel's mem to current frame") |
|
assert len(seq.shape) == 2 |
|
|
|
|
|
actual_context_length = 0 |
|
|
|
while seq[-1][ |
|
actual_context_length] >= 0: |
|
actual_context_length += 1 |
|
assert actual_context_length > 0 |
|
current_frame_num = (actual_context_length - text_len) // frame_len |
|
assert current_frame_num >= 0 |
|
context_length = text_len + current_frame_num * frame_len |
|
|
|
tokens, attention_mask, position_ids = get_masks_and_position_ids( |
|
seq, text_len, frame_len) |
|
tokens = tokens[..., :context_length] |
|
input_tokens = tokens.clone() |
|
|
|
if guider_seq is not None: |
|
guider_index_delta = text_len - guider_text_len |
|
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids( |
|
guider_seq, guider_text_len, frame_len) |
|
guider_tokens = guider_tokens[..., :context_length - |
|
guider_index_delta] |
|
guider_input_tokens = guider_tokens.clone() |
|
|
|
for fid in range(current_frame_num): |
|
input_tokens[:, text_len + 400 * fid] = tokenizer['<start_of_image>'] |
|
if guider_seq is not None: |
|
guider_input_tokens[:, guider_text_len + |
|
400 * fid] = tokenizer['<start_of_image>'] |
|
|
|
attention_mask = attention_mask.type_as(next( |
|
model.parameters())) |
|
|
|
counter = context_length - 1 |
|
index = 0 |
|
mems_buffers_on_GPU = False |
|
mems_indexs = [0, 0] |
|
mems_len = [(400 + 74) if limited_spatial_channel_mem else 5 * 400 + 74, |
|
5 * 400 + 74] |
|
mems_buffers = [ |
|
torch.zeros(args.num_layers, |
|
batch_size, |
|
mem_len, |
|
args.hidden_size * 2, |
|
dtype=next(model.parameters()).dtype) |
|
for mem_len in mems_len |
|
] |
|
|
|
if guider_seq is not None: |
|
guider_attention_mask = guider_attention_mask.type_as( |
|
next(model.parameters())) |
|
guider_mems_buffers = [ |
|
torch.zeros(args.num_layers, |
|
batch_size, |
|
mem_len, |
|
args.hidden_size * 2, |
|
dtype=next(model.parameters()).dtype) |
|
for mem_len in mems_len |
|
] |
|
guider_mems_indexs = [0, 0] |
|
guider_mems = None |
|
|
|
torch.cuda.empty_cache() |
|
|
|
while counter < len(seq[0]) - 1: |
|
|
|
|
|
|
|
if index == 0: |
|
group_size = 2 if (input_tokens.shape[0] == batch_size |
|
and not mode_stage1) else batch_size |
|
|
|
logits_all = None |
|
for batch_idx in range(0, input_tokens.shape[0], group_size): |
|
logits, *output_per_layers = model( |
|
input_tokens[batch_idx:batch_idx + group_size, index:], |
|
position_ids[..., index:counter + 1], |
|
attention_mask, |
|
mems=mems, |
|
text_len=text_len, |
|
frame_len=frame_len, |
|
counter=counter, |
|
log_text_attention_weights=log_text_attention_weights, |
|
enforce_no_swin=enforce_no_swin, |
|
**kw_args) |
|
logits_all = torch.cat( |
|
(logits_all, |
|
logits), dim=0) if logits_all is not None else logits |
|
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], |
|
[o['mem_kv'][1] for o in output_per_layers]] |
|
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id( |
|
text_len, frame_len, mem_kv01[0][0].shape[1]) |
|
for id, mem_kv in enumerate(mem_kv01): |
|
for layer, mem_kv_perlayer in enumerate(mem_kv): |
|
if limited_spatial_channel_mem and id == 0: |
|
mems_buffers[id][ |
|
layer, batch_idx:batch_idx + group_size, : |
|
text_len] = mem_kv_perlayer.expand( |
|
min(group_size, |
|
input_tokens.shape[0] - batch_idx), -1, |
|
-1)[:, :text_len] |
|
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\ |
|
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:] |
|
else: |
|
mems_buffers[id][ |
|
layer, batch_idx:batch_idx + |
|
group_size, :mem_kv_perlayer. |
|
shape[1]] = mem_kv_perlayer.expand( |
|
min(group_size, |
|
input_tokens.shape[0] - batch_idx), -1, |
|
-1) |
|
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[ |
|
1], mem_kv01[1][0].shape[1] |
|
if limited_spatial_channel_mem: |
|
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len) |
|
|
|
mems = [ |
|
mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2) |
|
] |
|
logits = logits_all |
|
|
|
|
|
if guider_seq is not None: |
|
guider_logits_all = None |
|
for batch_idx in range(0, guider_input_tokens.shape[0], |
|
group_size): |
|
guider_logits, *guider_output_per_layers = model( |
|
guider_input_tokens[batch_idx:batch_idx + group_size, |
|
max(index - |
|
guider_index_delta, 0):], |
|
guider_position_ids[ |
|
..., |
|
max(index - guider_index_delta, 0):counter + 1 - |
|
guider_index_delta], |
|
guider_attention_mask, |
|
mems=guider_mems, |
|
text_len=guider_text_len, |
|
frame_len=frame_len, |
|
counter=counter - guider_index_delta, |
|
log_text_attention_weights=log_text_attention_weights, |
|
enforce_no_swin=enforce_no_swin, |
|
**kw_args) |
|
guider_logits_all = torch.cat( |
|
(guider_logits_all, guider_logits), dim=0 |
|
) if guider_logits_all is not None else guider_logits |
|
guider_mem_kv01 = [[ |
|
o['mem_kv'][0] for o in guider_output_per_layers |
|
], [o['mem_kv'][1] for o in guider_output_per_layers]] |
|
for id, guider_mem_kv in enumerate(guider_mem_kv01): |
|
for layer, guider_mem_kv_perlayer in enumerate( |
|
guider_mem_kv): |
|
if limited_spatial_channel_mem and id == 0: |
|
guider_mems_buffers[id][ |
|
layer, batch_idx:batch_idx + group_size, : |
|
guider_text_len] = guider_mem_kv_perlayer.expand( |
|
min(group_size, |
|
input_tokens.shape[0] - batch_idx), |
|
-1, -1)[:, :guider_text_len] |
|
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id( |
|
guider_text_len, frame_len, |
|
guider_mem_kv_perlayer.shape[1]) |
|
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\ |
|
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:] |
|
else: |
|
guider_mems_buffers[id][ |
|
layer, batch_idx:batch_idx + |
|
group_size, :guider_mem_kv_perlayer. |
|
shape[1]] = guider_mem_kv_perlayer.expand( |
|
min(group_size, |
|
input_tokens.shape[0] - batch_idx), |
|
-1, -1) |
|
guider_mems_indexs[0], guider_mems_indexs[ |
|
1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[ |
|
1][0].shape[1] |
|
if limited_spatial_channel_mem: |
|
guider_mems_indexs[0] -= ( |
|
guider_next_tokens_frame_begin_id - |
|
guider_text_len) |
|
guider_mems = [ |
|
guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] |
|
for id in range(2) |
|
] |
|
guider_logits = guider_logits_all |
|
else: |
|
if not mems_buffers_on_GPU: |
|
if not mode_stage1: |
|
torch.cuda.empty_cache() |
|
for idx, mem in enumerate(mems): |
|
mems[idx] = mem.to(next(model.parameters()).device) |
|
if guider_seq is not None: |
|
for idx, mem in enumerate(guider_mems): |
|
guider_mems[idx] = mem.to( |
|
next(model.parameters()).device) |
|
else: |
|
torch.cuda.empty_cache() |
|
for idx, mem_buffer in enumerate(mems_buffers): |
|
mems_buffers[idx] = mem_buffer.to( |
|
next(model.parameters()).device) |
|
mems = [ |
|
mems_buffers[id][:, :, :mems_indexs[id]] |
|
for id in range(2) |
|
] |
|
if guider_seq is not None: |
|
for idx, guider_mem_buffer in enumerate( |
|
guider_mems_buffers): |
|
guider_mems_buffers[idx] = guider_mem_buffer.to( |
|
next(model.parameters()).device) |
|
guider_mems = [ |
|
guider_mems_buffers[id] |
|
[:, :, :guider_mems_indexs[id]] for id in range(2) |
|
] |
|
mems_buffers_on_GPU = True |
|
|
|
logits, *output_per_layers = model( |
|
input_tokens[:, index:], |
|
position_ids[..., index:counter + 1], |
|
attention_mask, |
|
mems=mems, |
|
text_len=text_len, |
|
frame_len=frame_len, |
|
counter=counter, |
|
log_text_attention_weights=log_text_attention_weights, |
|
enforce_no_swin=enforce_no_swin, |
|
limited_spatial_channel_mem=limited_spatial_channel_mem, |
|
**kw_args) |
|
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers |
|
], [o['mem_kv'][1] for o in output_per_layers] |
|
|
|
if guider_seq is not None: |
|
guider_logits, *guider_output_per_layers = model( |
|
guider_input_tokens[:, |
|
max(index - guider_index_delta, 0):], |
|
guider_position_ids[..., |
|
max(index - |
|
guider_index_delta, 0):counter + |
|
1 - guider_index_delta], |
|
guider_attention_mask, |
|
mems=guider_mems, |
|
text_len=guider_text_len, |
|
frame_len=frame_len, |
|
counter=counter - guider_index_delta, |
|
log_text_attention_weights=0, |
|
enforce_no_swin=enforce_no_swin, |
|
limited_spatial_channel_mem=limited_spatial_channel_mem, |
|
**kw_args) |
|
guider_mem_kv0, guider_mem_kv1 = [ |
|
o['mem_kv'][0] for o in guider_output_per_layers |
|
], [o['mem_kv'][1] for o in guider_output_per_layers] |
|
|
|
if not mems_buffers_on_GPU: |
|
torch.cuda.empty_cache() |
|
for idx, mem_buffer in enumerate(mems_buffers): |
|
mems_buffers[idx] = mem_buffer.to( |
|
next(model.parameters()).device) |
|
if guider_seq is not None: |
|
for idx, guider_mem_buffer in enumerate( |
|
guider_mems_buffers): |
|
guider_mems_buffers[idx] = guider_mem_buffer.to( |
|
next(model.parameters()).device) |
|
mems_buffers_on_GPU = True |
|
|
|
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], |
|
mems_buffers, mems_indexs, |
|
limited_spatial_channel_mem, |
|
text_len, frame_len) |
|
if guider_seq is not None: |
|
guider_mems, guider_mems_indexs = my_update_mems( |
|
[guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, |
|
guider_mems_indexs, limited_spatial_channel_mem, |
|
guider_text_len, frame_len) |
|
|
|
counter += 1 |
|
index = counter |
|
|
|
logits = logits[:, -1].expand(batch_size, |
|
-1) |
|
tokens = tokens.expand(batch_size, -1) |
|
if guider_seq is not None: |
|
guider_logits = guider_logits[:, -1].expand(batch_size, -1) |
|
guider_tokens = guider_tokens.expand(batch_size, -1) |
|
|
|
if seq[-1][counter].item() < 0: |
|
|
|
guided_logits = guider_logits + ( |
|
logits - guider_logits |
|
) * guidance_alpha if guider_seq is not None else logits |
|
if mode_stage1 and counter < text_len + 400: |
|
tokens, mems = strategy.forward(guided_logits, tokens, mems) |
|
else: |
|
tokens, mems = strategy2.forward(guided_logits, tokens, mems) |
|
if guider_seq is not None: |
|
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), |
|
dim=1) |
|
|
|
if seq[0][counter].item() >= 0: |
|
for si in range(seq.shape[0]): |
|
if seq[si][counter].item() >= 0: |
|
tokens[si, -1] = seq[si, counter] |
|
if guider_seq is not None: |
|
guider_tokens[si, |
|
-1] = guider_seq[si, counter - |
|
guider_index_delta] |
|
|
|
else: |
|
tokens = torch.cat( |
|
(tokens, seq[:, counter:counter + 1].clone().expand( |
|
tokens.shape[0], 1).to(device=tokens.device, |
|
dtype=tokens.dtype)), |
|
dim=1) |
|
if guider_seq is not None: |
|
guider_tokens = torch.cat( |
|
(guider_tokens, |
|
guider_seq[:, counter - guider_index_delta:counter + 1 - |
|
guider_index_delta].clone().expand( |
|
guider_tokens.shape[0], 1).to( |
|
device=guider_tokens.device, |
|
dtype=guider_tokens.dtype)), |
|
dim=1) |
|
|
|
input_tokens = tokens.clone() |
|
if guider_seq is not None: |
|
guider_input_tokens = guider_tokens.clone() |
|
if (index - text_len - 1) // 400 < (input_tokens.shape[-1] - text_len - |
|
1) // 400: |
|
boi_idx = ((index - text_len - 1) // 400 + 1) * 400 + text_len |
|
while boi_idx < input_tokens.shape[-1]: |
|
input_tokens[:, boi_idx] = tokenizer['<start_of_image>'] |
|
if guider_seq is not None: |
|
guider_input_tokens[:, boi_idx - |
|
guider_index_delta] = tokenizer[ |
|
'<start_of_image>'] |
|
boi_idx += 400 |
|
|
|
if strategy.is_done: |
|
break |
|
return strategy.finalize(tokens, mems) |
|
|
|
|
|
class InferenceModel_Sequential(CogVideoCacheModel): |
|
def __init__(self, args, transformer=None, parallel_output=True): |
|
super().__init__(args, |
|
transformer=transformer, |
|
parallel_output=parallel_output, |
|
window_size=-1, |
|
cogvideo_stage=1) |
|
|
|
|
|
|
|
def final_forward(self, logits, **kwargs): |
|
logits_parallel = logits |
|
logits_parallel = torch.nn.functional.linear( |
|
logits_parallel.float(), |
|
self.transformer.word_embeddings.weight[:20000].float()) |
|
return logits_parallel |
|
|
|
|
|
class InferenceModel_Interpolate(CogVideoCacheModel): |
|
def __init__(self, args, transformer=None, parallel_output=True): |
|
super().__init__(args, |
|
transformer=transformer, |
|
parallel_output=parallel_output, |
|
window_size=10, |
|
cogvideo_stage=2) |
|
|
|
|
|
|
|
def final_forward(self, logits, **kwargs): |
|
logits_parallel = logits |
|
logits_parallel = torch.nn.functional.linear( |
|
logits_parallel.float(), |
|
self.transformer.word_embeddings.weight[:20000].float()) |
|
return logits_parallel |
|
|
|
|
|
def get_default_args() -> argparse.Namespace: |
|
known = argparse.Namespace(generate_frame_num=5, |
|
coglm_temperature2=0.89, |
|
use_guidance_stage1=True, |
|
use_guidance_stage2=False, |
|
guidance_alpha=3.0, |
|
stage_1=True, |
|
stage_2=False, |
|
both_stages=False, |
|
parallel_size=1, |
|
stage1_max_inference_batch_size=-1, |
|
multi_gpu=False, |
|
layout='64, 464, 2064', |
|
window_size=10, |
|
additional_seqlen=2000, |
|
cogvideo_stage=1) |
|
|
|
args_list = [ |
|
'--tokenizer-type', |
|
'fake', |
|
'--mode', |
|
'inference', |
|
'--distributed-backend', |
|
'nccl', |
|
'--fp16', |
|
'--model-parallel-size', |
|
'1', |
|
'--temperature', |
|
'1.05', |
|
'--top_k', |
|
'12', |
|
'--sandwich-ln', |
|
'--seed', |
|
'1234', |
|
'--num-workers', |
|
'0', |
|
'--batch-size', |
|
'1', |
|
'--max-inference-batch-size', |
|
'8', |
|
] |
|
args = get_args(args_list) |
|
args = argparse.Namespace(**vars(args), **vars(known)) |
|
args.layout = [int(x) for x in args.layout.split(',')] |
|
args.do_train = False |
|
return args |
|
|
|
|
|
class Model: |
|
def __init__(self, only_first_stage: bool = False): |
|
self.args = get_default_args() |
|
if only_first_stage: |
|
self.args.stage_1 = True |
|
self.args.both_stages = False |
|
else: |
|
self.args.stage_1 = False |
|
self.args.both_stages = True |
|
|
|
self.tokenizer = self.load_tokenizer() |
|
|
|
self.model_stage1, self.args = self.load_model_stage1() |
|
self.model_stage2, self.args = self.load_model_stage2() |
|
|
|
self.strategy_cogview2, self.strategy_cogvideo = self.load_strategies() |
|
self.dsr = self.load_dsr() |
|
|
|
self.device = torch.device(self.args.device) |
|
|
|
def load_tokenizer(self) -> IceTokenizer: |
|
logger.info('--- load_tokenizer ---') |
|
start = time.perf_counter() |
|
|
|
tokenizer = IceTokenizer(ICETK_MODEL_DIR.as_posix()) |
|
tokenizer.add_special_tokens( |
|
['<start_of_image>', '<start_of_english>', '<start_of_chinese>']) |
|
|
|
elapsed = time.perf_counter() - start |
|
logger.info(f'--- done ({elapsed=:.3f}) ---') |
|
return tokenizer |
|
|
|
def load_model_stage1( |
|
self) -> tuple[CogVideoCacheModel, argparse.Namespace]: |
|
logger.info('--- load_model_stage1 ---') |
|
start = time.perf_counter() |
|
|
|
args = self.args |
|
model_stage1, args = InferenceModel_Sequential.from_pretrained( |
|
args, 'cogvideo-stage1') |
|
model_stage1.eval() |
|
if args.both_stages: |
|
model_stage1 = model_stage1.cpu() |
|
|
|
elapsed = time.perf_counter() - start |
|
logger.info(f'--- done ({elapsed=:.3f}) ---') |
|
return model_stage1, args |
|
|
|
def load_model_stage2( |
|
self) -> tuple[CogVideoCacheModel | None, argparse.Namespace]: |
|
logger.info('--- load_model_stage2 ---') |
|
start = time.perf_counter() |
|
|
|
args = self.args |
|
if args.both_stages: |
|
model_stage2, args = InferenceModel_Interpolate.from_pretrained( |
|
args, 'cogvideo-stage2') |
|
model_stage2.eval() |
|
if args.both_stages: |
|
model_stage2 = model_stage2.cpu() |
|
else: |
|
model_stage2 = None |
|
|
|
elapsed = time.perf_counter() - start |
|
logger.info(f'--- done ({elapsed=:.3f}) ---') |
|
return model_stage2, args |
|
|
|
def load_strategies(self) -> tuple[CoglmStrategy, CoglmStrategy]: |
|
logger.info('--- load_strategies ---') |
|
start = time.perf_counter() |
|
|
|
invalid_slices = [slice(self.tokenizer.num_image_tokens, None)] |
|
strategy_cogview2 = CoglmStrategy(invalid_slices, |
|
temperature=1.0, |
|
top_k=16) |
|
strategy_cogvideo = CoglmStrategy( |
|
invalid_slices, |
|
temperature=self.args.temperature, |
|
top_k=self.args.top_k, |
|
temperature2=self.args.coglm_temperature2) |
|
|
|
elapsed = time.perf_counter() - start |
|
logger.info(f'--- done ({elapsed=:.3f}) ---') |
|
return strategy_cogview2, strategy_cogvideo |
|
|
|
def load_dsr(self) -> DirectSuperResolution | None: |
|
logger.info('--- load_dsr ---') |
|
start = time.perf_counter() |
|
|
|
if self.args.both_stages: |
|
path = auto_create('cogview2-dsr', path=None) |
|
dsr = DirectSuperResolution(self.args, |
|
path, |
|
max_bz=12, |
|
onCUDA=False) |
|
else: |
|
dsr = None |
|
|
|
elapsed = time.perf_counter() - start |
|
logger.info(f'--- done ({elapsed=:.3f}) ---') |
|
return dsr |
|
|
|
@torch.inference_mode() |
|
def process_stage1(self, |
|
model, |
|
seq_text, |
|
duration, |
|
video_raw_text=None, |
|
video_guidance_text='视频', |
|
image_text_suffix='', |
|
batch_size=1): |
|
process_start_time = time.perf_counter() |
|
|
|
generate_frame_num = self.args.generate_frame_num |
|
tokenizer = self.tokenizer |
|
use_guide = self.args.use_guidance_stage1 |
|
|
|
if next(model.parameters()).device != self.device: |
|
move_start_time = time.perf_counter() |
|
logger.debug('moving stage 1 model to cuda') |
|
|
|
model = model.to(self.device) |
|
|
|
elapsed = time.perf_counter() - move_start_time |
|
logger.debug(f'moving in model1 takes time: {elapsed:.2f}') |
|
|
|
if video_raw_text is None: |
|
video_raw_text = seq_text |
|
mbz = self.args.stage1_max_inference_batch_size if self.args.stage1_max_inference_batch_size > 0 else self.args.max_inference_batch_size |
|
assert batch_size < mbz or batch_size % mbz == 0 |
|
frame_len = 400 |
|
|
|
|
|
enc_text = tokenizer.encode(seq_text + image_text_suffix) |
|
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1] * 400 |
|
logger.info( |
|
f'[Generating First Frame with CogView2] Raw text: {tokenizer.decode(enc_text):s}' |
|
) |
|
text_len_1st = len(seq_1st) - frame_len * 1 - 1 |
|
|
|
seq_1st = torch.tensor(seq_1st, dtype=torch.long, |
|
device=self.device).unsqueeze(0) |
|
output_list_1st = [] |
|
for tim in range(max(batch_size // mbz, 1)): |
|
start_time = time.perf_counter() |
|
output_list_1st.append( |
|
my_filling_sequence( |
|
model, |
|
tokenizer, |
|
self.args, |
|
seq_1st.clone(), |
|
batch_size=min(batch_size, mbz), |
|
get_masks_and_position_ids= |
|
get_masks_and_position_ids_stage1, |
|
text_len=text_len_1st, |
|
frame_len=frame_len, |
|
strategy=self.strategy_cogview2, |
|
strategy2=self.strategy_cogvideo, |
|
log_text_attention_weights=1.4, |
|
enforce_no_swin=True, |
|
mode_stage1=True, |
|
)[0]) |
|
elapsed = time.perf_counter() - start_time |
|
logger.info(f'[First Frame] Elapsed: {elapsed:.2f}') |
|
output_tokens_1st = torch.cat(output_list_1st, dim=0) |
|
given_tokens = output_tokens_1st[:, text_len_1st + 1:text_len_1st + |
|
401].unsqueeze( |
|
1 |
|
) |
|
|
|
|
|
total_frames = generate_frame_num |
|
enc_duration = tokenizer.encode(f'{float(duration)}秒') |
|
if use_guide: |
|
video_raw_text = video_raw_text + ' 视频' |
|
enc_text_video = tokenizer.encode(video_raw_text) |
|
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [ |
|
tokenizer['<start_of_image>'] |
|
] + [-1] * 400 * generate_frame_num |
|
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode( |
|
video_guidance_text) + [tokenizer['<start_of_image>'] |
|
] + [-1] * 400 * generate_frame_num |
|
logger.info( |
|
f'[Stage1: Generating Subsequent Frames, Frame Rate {4/duration:.1f}] raw text: {tokenizer.decode(enc_text_video):s}' |
|
) |
|
|
|
text_len = len(seq) - frame_len * generate_frame_num - 1 |
|
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1 |
|
seq = torch.tensor(seq, dtype=torch.long, |
|
device=self.device).unsqueeze(0).repeat( |
|
batch_size, 1) |
|
guider_seq = torch.tensor(guider_seq, |
|
dtype=torch.long, |
|
device=self.device).unsqueeze(0).repeat( |
|
batch_size, 1) |
|
|
|
for given_frame_id in range(given_tokens.shape[1]): |
|
seq[:, text_len + 1 + given_frame_id * 400:text_len + 1 + |
|
(given_frame_id + 1) * 400] = given_tokens[:, given_frame_id] |
|
guider_seq[:, guider_text_len + 1 + |
|
given_frame_id * 400:guider_text_len + 1 + |
|
(given_frame_id + 1) * |
|
400] = given_tokens[:, given_frame_id] |
|
output_list = [] |
|
|
|
if use_guide: |
|
video_log_text_attention_weights = 0 |
|
else: |
|
guider_seq = None |
|
video_log_text_attention_weights = 1.4 |
|
|
|
for tim in range(max(batch_size // mbz, 1)): |
|
input_seq = seq[:min(batch_size, mbz)].clone( |
|
) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone() |
|
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() |
|
if tim == 0 else guider_seq[mbz * tim:mbz * |
|
(tim + 1)].clone() |
|
) if guider_seq is not None else None |
|
output_list.append( |
|
my_filling_sequence( |
|
model, |
|
tokenizer, |
|
self.args, |
|
input_seq, |
|
batch_size=min(batch_size, mbz), |
|
get_masks_and_position_ids= |
|
get_masks_and_position_ids_stage1, |
|
text_len=text_len, |
|
frame_len=frame_len, |
|
strategy=self.strategy_cogview2, |
|
strategy2=self.strategy_cogvideo, |
|
log_text_attention_weights=video_log_text_attention_weights, |
|
guider_seq=guider_seq2, |
|
guider_text_len=guider_text_len, |
|
guidance_alpha=self.args.guidance_alpha, |
|
limited_spatial_channel_mem=True, |
|
mode_stage1=True, |
|
)[0]) |
|
|
|
output_tokens = torch.cat(output_list, dim=0)[:, 1 + text_len:] |
|
|
|
if self.args.both_stages: |
|
move_start_time = time.perf_counter() |
|
logger.debug('moving stage 1 model to cpu') |
|
model = model.cpu() |
|
torch.cuda.empty_cache() |
|
elapsed = time.perf_counter() - move_start_time |
|
logger.debug(f'moving in model1 takes time: {elapsed:.2f}') |
|
|
|
|
|
res = [] |
|
for seq in output_tokens: |
|
decoded_imgs = [ |
|
self.postprocess( |
|
torch.nn.functional.interpolate(tokenizer.decode( |
|
image_ids=seq.tolist()[i * 400:(i + 1) * 400]), |
|
size=(480, 480))[0]) |
|
for i in range(total_frames) |
|
] |
|
res.append(decoded_imgs) |
|
|
|
assert len(res) == batch_size |
|
tokens = output_tokens[:, :+total_frames * 400].reshape( |
|
-1, total_frames, 400).cpu() |
|
|
|
elapsed = time.perf_counter() - process_start_time |
|
logger.info(f'--- done ({elapsed=:.3f}) ---') |
|
return tokens, res[0] |
|
|
|
@torch.inference_mode() |
|
def process_stage2(self, |
|
model, |
|
seq_text, |
|
duration, |
|
parent_given_tokens, |
|
video_raw_text=None, |
|
video_guidance_text='视频', |
|
gpu_rank=0, |
|
gpu_parallel_size=1): |
|
process_start_time = time.perf_counter() |
|
|
|
generate_frame_num = self.args.generate_frame_num |
|
tokenizer = self.tokenizer |
|
use_guidance = self.args.use_guidance_stage2 |
|
|
|
stage2_start_time = time.perf_counter() |
|
|
|
if next(model.parameters()).device != self.device: |
|
move_start_time = time.perf_counter() |
|
logger.debug('moving stage-2 model to cuda') |
|
|
|
model = model.to(self.device) |
|
|
|
elapsed = time.perf_counter() - move_start_time |
|
logger.debug(f'moving in stage-2 model takes time: {elapsed:.2f}') |
|
|
|
try: |
|
sample_num_allgpu = parent_given_tokens.shape[0] |
|
sample_num = sample_num_allgpu // gpu_parallel_size |
|
assert sample_num * gpu_parallel_size == sample_num_allgpu |
|
parent_given_tokens = parent_given_tokens[gpu_rank * |
|
sample_num:(gpu_rank + |
|
1) * |
|
sample_num] |
|
except: |
|
logger.critical('No frame_tokens found in interpolation, skip') |
|
return False, [] |
|
|
|
|
|
while duration >= 0.5: |
|
parent_given_tokens_num = parent_given_tokens.shape[1] |
|
generate_batchsize_persample = (parent_given_tokens_num - 1) // 2 |
|
generate_batchsize_total = generate_batchsize_persample * sample_num |
|
total_frames = generate_frame_num |
|
frame_len = 400 |
|
enc_text = tokenizer.encode(seq_text) |
|
enc_duration = tokenizer.encode(str(float(duration)) + '秒') |
|
seq = enc_duration + [tokenizer['<n>']] + enc_text + [ |
|
tokenizer['<start_of_image>'] |
|
] + [-1] * 400 * generate_frame_num |
|
text_len = len(seq) - frame_len * generate_frame_num - 1 |
|
|
|
logger.info( |
|
f'[Stage2: Generating Frames, Frame Rate {int(4/duration):d}] raw text: {tokenizer.decode(enc_text):s}' |
|
) |
|
|
|
|
|
seq = torch.tensor(seq, dtype=torch.long, |
|
device=self.device).unsqueeze(0).repeat( |
|
generate_batchsize_total, 1) |
|
for sample_i in range(sample_num): |
|
for i in range(generate_batchsize_persample): |
|
seq[sample_i * generate_batchsize_persample + |
|
i][text_len + 1:text_len + 1 + |
|
400] = parent_given_tokens[sample_i][2 * i] |
|
seq[sample_i * generate_batchsize_persample + |
|
i][text_len + 1 + 400:text_len + 1 + |
|
800] = parent_given_tokens[sample_i][2 * i + 1] |
|
seq[sample_i * generate_batchsize_persample + |
|
i][text_len + 1 + 800:text_len + 1 + |
|
1200] = parent_given_tokens[sample_i][2 * i + 2] |
|
|
|
if use_guidance: |
|
guider_seq = enc_duration + [ |
|
tokenizer['<n>'] |
|
] + tokenizer.encode(video_guidance_text) + [ |
|
tokenizer['<start_of_image>'] |
|
] + [-1] * 400 * generate_frame_num |
|
guider_text_len = len( |
|
guider_seq) - frame_len * generate_frame_num - 1 |
|
guider_seq = torch.tensor( |
|
guider_seq, dtype=torch.long, |
|
device=self.device).unsqueeze(0).repeat( |
|
generate_batchsize_total, 1) |
|
for sample_i in range(sample_num): |
|
for i in range(generate_batchsize_persample): |
|
guider_seq[sample_i * generate_batchsize_persample + |
|
i][text_len + 1:text_len + 1 + |
|
400] = parent_given_tokens[sample_i][2 * |
|
i] |
|
guider_seq[sample_i * generate_batchsize_persample + |
|
i][text_len + 1 + 400:text_len + 1 + |
|
800] = parent_given_tokens[sample_i][2 * |
|
i + |
|
1] |
|
guider_seq[sample_i * generate_batchsize_persample + |
|
i][text_len + 1 + 800:text_len + 1 + |
|
1200] = parent_given_tokens[sample_i][2 * |
|
i + |
|
2] |
|
video_log_text_attention_weights = 0 |
|
else: |
|
guider_seq = None |
|
guider_text_len = 0 |
|
video_log_text_attention_weights = 1.4 |
|
|
|
mbz = self.args.max_inference_batch_size |
|
|
|
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0 |
|
output_list = [] |
|
start_time = time.perf_counter() |
|
for tim in range(max(generate_batchsize_total // mbz, 1)): |
|
input_seq = seq[:min(generate_batchsize_total, mbz)].clone( |
|
) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone() |
|
guider_seq2 = ( |
|
guider_seq[:min(generate_batchsize_total, mbz)].clone() |
|
if tim == 0 else guider_seq[mbz * tim:mbz * |
|
(tim + 1)].clone() |
|
) if guider_seq is not None else None |
|
output_list.append( |
|
my_filling_sequence( |
|
model, |
|
tokenizer, |
|
self.args, |
|
input_seq, |
|
batch_size=min(generate_batchsize_total, mbz), |
|
get_masks_and_position_ids= |
|
get_masks_and_position_ids_stage2, |
|
text_len=text_len, |
|
frame_len=frame_len, |
|
strategy=self.strategy_cogview2, |
|
strategy2=self.strategy_cogvideo, |
|
log_text_attention_weights= |
|
video_log_text_attention_weights, |
|
mode_stage1=False, |
|
guider_seq=guider_seq2, |
|
guider_text_len=guider_text_len, |
|
guidance_alpha=self.args.guidance_alpha, |
|
limited_spatial_channel_mem=True, |
|
)[0]) |
|
elapsed = time.perf_counter() - start_time |
|
logger.info(f'Duration {duration:.2f}, Elapsed: {elapsed:.2f}\n') |
|
|
|
output_tokens = torch.cat(output_list, dim=0) |
|
output_tokens = output_tokens[:, text_len + 1:text_len + 1 + |
|
(total_frames) * 400].reshape( |
|
sample_num, -1, |
|
400 * total_frames) |
|
output_tokens_merge = torch.cat( |
|
(output_tokens[:, :, :1 * 400], output_tokens[:, :, |
|
400 * 3:4 * 400], |
|
output_tokens[:, :, 400 * 1:2 * 400], |
|
output_tokens[:, :, 400 * 4:(total_frames) * 400]), |
|
dim=2).reshape(sample_num, -1, 400) |
|
|
|
output_tokens_merge = torch.cat( |
|
(output_tokens_merge, output_tokens[:, -1:, 400 * 2:3 * 400]), |
|
dim=1) |
|
duration /= 2 |
|
parent_given_tokens = output_tokens_merge |
|
|
|
if self.args.both_stages: |
|
move_start_time = time.perf_counter() |
|
logger.debug('moving stage 2 model to cpu') |
|
model = model.cpu() |
|
torch.cuda.empty_cache() |
|
elapsed = time.perf_counter() - move_start_time |
|
logger.debug(f'moving out model2 takes time: {elapsed:.2f}') |
|
|
|
elapsed = time.perf_counter() - stage2_start_time |
|
logger.info(f'CogVideo Stage2 completed. Elapsed: {elapsed:.2f}\n') |
|
|
|
|
|
logger.info('[Direct super-resolution]') |
|
dsr_start_time = time.perf_counter() |
|
|
|
enc_text = tokenizer.encode(seq_text) |
|
frame_num_per_sample = parent_given_tokens.shape[1] |
|
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400) |
|
text_seq = torch.tensor(enc_text, dtype=torch.long, |
|
device=self.device).unsqueeze(0).repeat( |
|
parent_given_tokens_2d.shape[0], 1) |
|
sred_tokens = self.dsr(text_seq, parent_given_tokens_2d) |
|
|
|
decoded_sr_videos = [] |
|
for sample_i in range(sample_num): |
|
decoded_sr_imgs = [] |
|
for frame_i in range(frame_num_per_sample): |
|
decoded_sr_img = tokenizer.decode( |
|
image_ids=sred_tokens[frame_i + sample_i * |
|
frame_num_per_sample][-3600:]) |
|
decoded_sr_imgs.append( |
|
self.postprocess( |
|
torch.nn.functional.interpolate(decoded_sr_img, |
|
size=(480, 480))[0])) |
|
decoded_sr_videos.append(decoded_sr_imgs) |
|
|
|
elapsed = time.perf_counter() - dsr_start_time |
|
logger.info( |
|
f'Direct super-resolution completed. Elapsed: {elapsed:.2f}') |
|
|
|
elapsed = time.perf_counter() - process_start_time |
|
logger.info(f'--- done ({elapsed=:.3f}) ---') |
|
return True, decoded_sr_videos[0] |
|
|
|
@staticmethod |
|
def postprocess(tensor: torch.Tensor) -> np.ndarray: |
|
return tensor.cpu().mul(255).add_(0.5).clamp_(0, 255).permute( |
|
1, 2, 0).to(torch.uint8).numpy() |
|
|
|
def run(self, text: str, seed: int, |
|
only_first_stage: bool) -> list[np.ndarray]: |
|
logger.info('==================== run ====================') |
|
start = time.perf_counter() |
|
|
|
set_random_seed(seed) |
|
self.args.seed = seed |
|
|
|
if only_first_stage: |
|
self.args.stage_1 = True |
|
self.args.both_stages = False |
|
else: |
|
self.args.stage_1 = False |
|
self.args.both_stages = True |
|
|
|
parent_given_tokens, res = self.process_stage1( |
|
self.model_stage1, |
|
text, |
|
duration=4.0, |
|
video_raw_text=text, |
|
video_guidance_text='视频', |
|
image_text_suffix=' 高清摄影', |
|
batch_size=self.args.batch_size) |
|
if not only_first_stage: |
|
_, res = self.process_stage2( |
|
self.model_stage2, |
|
text, |
|
duration=2.0, |
|
parent_given_tokens=parent_given_tokens, |
|
video_raw_text=text + ' 视频', |
|
video_guidance_text='视频', |
|
gpu_rank=0, |
|
gpu_parallel_size=1) |
|
|
|
elapsed = time.perf_counter() - start |
|
logger.info(f'Elapsed: {elapsed:.3f}') |
|
logger.info('==================== done ====================') |
|
return res |
|
|
|
|
|
class AppModel(Model): |
|
def __init__(self, only_first_stage: bool): |
|
super().__init__(only_first_stage) |
|
self.translator = gr.Interface.load( |
|
'spaces/chinhon/translation_eng2ch') |
|
|
|
def to_video(self, frames: list[np.ndarray]) -> str: |
|
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) |
|
if self.args.stage_1: |
|
fps = 4 |
|
else: |
|
fps = 8 |
|
writer = iio.get_writer(out_file.name, fps=fps) |
|
for frame in frames: |
|
writer.append_data(frame) |
|
writer.close() |
|
return out_file.name |
|
|
|
def run_with_translation( |
|
self, text: str, translate: bool, seed: int, only_first_stage: bool |
|
) -> tuple[str | None, str | None, list[np.ndarray] | None]: |
|
logger.info(f'{text=}, {translate=}, {seed=}, {only_first_stage=}') |
|
if translate: |
|
text = translated_text = self.translator(text) |
|
else: |
|
translated_text = None |
|
frames = self.run(text, seed, only_first_stage) |
|
video_path = self.to_video(frames) |
|
return translated_text, video_path, frames |
|
|