Spaces:
Runtime error
Runtime error
File size: 11,440 Bytes
57e3690 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
#include "common.h"
#include "llama.h"
#include "ggml.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include <cstdio>
#include <ctime>
#include <random>
#include <string>
#include <vector>
#define DEBUG_POS 5
static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
if (!with_data) return;
printf("%s: %s[0] = [", __func__, t->name);
for (size_t i = 0; i <= DEBUG_POS; i++) {
printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
}
printf(" ... ]\n");
}
namespace PCA {
// input params for PCA computations
struct pca_params {
int n_threads = 1;
int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
int n_iterations = 1000;
float tolerance = 1e-7;
// for debugging
int i_layer = 0;
int n_layers = 0;
};
// result from each iteration
struct pca_result {
struct ggml_tensor * calculated_square = NULL;
std::vector<struct ggml_tensor *> eigenvectors;
std::vector<float> distances;
};
struct pca_model {
ggml_backend_t backend = NULL;
ggml_backend_buffer_t buffer;
struct ggml_context * ctx; // context to compute graph on target device
struct ggml_context * ctx_host; // host context to store results
// tensors on target device
struct ggml_tensor * dev_input;
struct ggml_tensor * dev_square;
struct ggml_tensor * dev_eigenvector;
pca_model(struct ggml_tensor * t_input) {
#ifdef GGML_USE_CUDA
fprintf(stderr, "%s: using CUDA backend\n", __func__);
backend = ggml_backend_cuda_init(0); // init device 0
if (!backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
#endif
// TODO: enable Metal support when support for GGML_OP_SQRT is added
// #ifdef GGML_USE_METAL
// fprintf(stderr, "%s: using Metal backend\n", __func__);
// backend = ggml_backend_metal_init();
// if (!backend) {
// fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
// }
// #endif
// if there aren't GPU Backends fallback to CPU backend
if (!backend) {
backend = ggml_backend_cpu_init();
}
const int num_tensors = 4;
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx = ggml_init(params);
auto n_samples = t_input->ne[0];
auto n_embd = t_input->ne[1];
dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
ggml_set_name(dev_input, "dev_input");
ggml_set_name(dev_square, "dev_square");
ggml_set_name(dev_eigenvector, "dev_eigenvector");
buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));
// initialize eigenvector to random normalized vector
{
std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
std::uniform_real_distribution<float> distribution(0.0, 1.0);
float sum_sqr = 0.0; // for normalizing random_vec
for (size_t i = 0; i < random_vec.size(); ++i) {
float f = distribution(generator);
sum_sqr += f * f;
random_vec[i] = f;
}
// normalize it
float random_vec_norm = std::sqrt(sum_sqr);
for (size_t i = 0; i < random_vec.size(); ++i) {
random_vec[i] /= random_vec_norm;
}
ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
}
}
~pca_model() {
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
}
};
static struct ggml_cgraph * build_graph_piter(
const struct pca_params & params,
const pca_model & model,
bool calc_square = false) {
GGML_ASSERT(params.n_batch > 0);
// TODO: buf_size must be able to scale with params.n_batch
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params0 = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf.data(),
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
};
// create a temporally context to build the graph
struct ggml_context * ctx0 = ggml_init(params0);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
// turn v_diff_original into square matrix if needed
struct ggml_tensor * tmp_square;
if (calc_square) {
tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
ggml_set_name(tmp_square, "tmp_square");
}
struct ggml_tensor * b_tensor;
struct ggml_tensor * distance;
struct ggml_tensor * old_eigen = model.dev_eigenvector;
struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;
for (int i = 0; i < params.n_batch; ++i) {
// b_tensor = square * eigenvector^T
b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
ggml_set_name(b_tensor, "b_tensor");
// normalize
b_tensor = ggml_div_inplace(ctx0,
b_tensor,
ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
);
ggml_format_name(b_tensor, "b_tensor_norm_%d", i);
// calculate distance(new eigenvector - old eigenvector)
// we don't use ggml_sub because it may not be implemented on GPU backend
struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
distance = ggml_sqrt_inplace(ctx0,
ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
ggml_format_name(distance, "distance_%d", i);
old_eigen = b_tensor;
// build operations nodes
ggml_build_forward_expand(gf, distance);
}
// delete the temporally context used to build the graph
ggml_free(ctx0);
return gf;
}
static ggml_status compute_piter(
const struct pca_params & params,
const pca_model & model,
struct ggml_cgraph * gf,
ggml_gallocr_t allocr,
struct pca_result & result) {
// allocate tensors
ggml_gallocr_alloc_graph(allocr, gf);
if (ggml_backend_is_cpu(model.backend)) {
ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
}
ggml_status res = ggml_backend_graph_compute(model.backend, gf);
if (res == GGML_STATUS_SUCCESS) {
auto extract_i = [](std::string prefix, std::string str) -> int {
int i = -1;
if (str.rfind(prefix, 0) == 0) {
sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
}
return i;
};
result.calculated_square = NULL;
result.eigenvectors.clear();
result.distances.clear();
result.eigenvectors.resize(params.n_batch);
result.distances.resize(params.n_batch);
// get output nodes
for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
auto node = ggml_graph_node(gf, i);
int iter = -1;
// find b_tensor (without copying data from device)
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
result.eigenvectors[iter] = node;
}
// find distances, then copy data from device
if ((iter = extract_i("distance_", node->name)) > -1) {
float d;
ggml_backend_tensor_get(node, &d, 0, sizeof(float));
result.distances[iter] = d;
// std::cout << node->name << " = " << d << "\n";
}
// find tmp_square if it exists (without copying data from device)
if (std::string(node->name) == "tmp_square") {
result.calculated_square = node;
}
}
}
return res;
}
static void power_iteration(
const struct pca_params & params,
struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
struct ggml_tensor * output) {
//printf("in power iteration\n");
struct pca_model model(input);
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
struct pca_result result;
struct ggml_tensor * last_eigenvector = NULL;
int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
for (int iter = 0; iter < n_iters; ++iter) {
bool calc_square = (iter == 0); // only need to calculate square for first iteration
struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
// ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
compute_piter(params, model, gf, allocr, result);
for (size_t k = 0; k < result.distances.size(); ++k) {
last_eigenvector = result.eigenvectors[k];
if (result.distances[k] < params.tolerance) {
break; // done
}
}
if (calc_square) {
// copy and store the square matrix if needed
GGML_ASSERT(result.calculated_square != NULL);
ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
}
{
// copy last eigen vector and store as input for next iteration
GGML_ASSERT(last_eigenvector != NULL);
ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
}
printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
__func__, params.i_layer+1, params.n_layers, iter+1, n_iters, params.n_batch);
}
// get output tensor
GGML_ASSERT(last_eigenvector);
ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
//print_debug_tensor(output);
ggml_gallocr_free(allocr);
// TODO @ngxson : The output vector is randomly inverted
// Solution: https://github.com/ggerganov/llama.cpp/pull/8069#issuecomment-2185328171
}
static void run_pca(
struct pca_params & params,
const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
const std::vector<struct ggml_tensor *> & v_output) {
printf("%s: Running PCA...\n", __func__);
for (size_t il = 0; il < v_input.size(); ++il) {
// prepare output vector
struct ggml_tensor * ctrl_out = v_output[il];
ggml_format_name(ctrl_out, "direction.%ld", il+1);
// run power_iteration
params.i_layer = il;
params.n_layers = v_input.size();
power_iteration(params, v_input[il], ctrl_out);
printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
}
}
}
|