Spaces:
Runtime error
Runtime error
File size: 16,183 Bytes
57e3690 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"
#include <cstdio>
#include <string>
#include <vector>
struct ngram_data {
bool active = false;
llama_seq_id seq_id = -1;
std::vector<int> i_batch;
std::vector<llama_token> tokens;
};
// n-gram container
struct ngram_container {
ngram_container(int n_vocab, int N, int G) {
cnt.resize(n_vocab);
head.resize(n_vocab);
tokens.resize(n_vocab * G * (N - 1));
}
int n_total = 0;
std::vector<int> cnt;
std::vector<int> head;
// [n_vocab][G][N - 1]
// for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1
std::vector<llama_token> tokens;
};
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
return 1;
}
common_init();
const int W = 15; // lookahead window
const int N = 5; // n-gram size
const int G = 15; // max verification n-grams
const bool dump_kv_cache = params.dump_kv_cache;
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
// load the target model
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
// Tokenize the prompt
std::vector<llama_token> inp;
std::vector<llama_token> all;
inp = common_tokenize(ctx, params.prompt, true, true);
all = inp;
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ((int) inp.size() > max_tokens_list_size) {
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
return 1;
}
LOG("\n\n");
for (auto id : inp) {
LOG("%s", common_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
const int n_input = inp.size();
const auto t_enc_start = ggml_time_us();
// eval the prompt
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
}
const auto t_enc_end = ggml_time_us();
int n_predict = 0;
int n_accept = 0;
int n_past = inp.size();
llama_token id = 0;
// used to determine end of generation
bool has_eos = false;
// for each decoded batch, we have at most W + G + 1 distinct sequences:
// seq_id == 0 : the current input token
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
// seq_id [W + 1, W + G] : verification n-grams
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
// target model sampling context
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
// verification n-grams
std::vector<ngram_data> ngrams_cur(G);
// tokens for the past N - 1 Jacobi iterations
std::vector<llama_token> tokens_j_prev(W);
std::vector<std::vector<llama_token>> tokens_j(N - 1);
for (int j = 0; j < N - 1; j++) {
tokens_j[j].resize(W);
for (int i = 0; i < W; i++) {
// there are different ways to init these tokens
if (0) {
// initialize randomly from the prompt tokens
tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
} else {
// initialize with a sequence of increasing numbers
tokens_j[j][i] = 100 + i;
}
}
}
std::vector<llama_seq_id> seq_id_look;
// the input token belongs both to all sequences
std::vector<llama_seq_id> seq_id_all(W + G + 1);
for (int i = 0; i < W + G + 1; i++) {
seq_id_all[i] = i;
}
// here we keep adding new n-grams as we go
ngram_container ngrams_observed(llama_n_vocab(model), N, G);
// debug
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
const auto t_dec_start = ggml_time_us();
// sample first token
{
id = common_sampler_sample(smpl, ctx, 0);
common_sampler_accept(smpl, id, true);
{
const std::string token_str = common_token_to_piece(ctx, id);
LOG("%s", token_str.c_str());
fflush(stdout);
}
}
while (true) {
// debug
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
common_kv_cache_dump_view_seqs(kvc_view, 40);
}
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
//
// Example for W = 5, N = 4, G = 2:
// (I = input, L = lookahead, V = verification)
//
// Batch: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// T: -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 0
// Info: I L L L L L L L L L L L L L L V V V V V V
// Pos: 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 1 2 3 1 2 3 (+ n_past)
// Logits: 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
// ---------------------------------------------------------------------
// Seq: 0
// 1 1 1
// 2 2 2 2
// 3 3 3 3 3
// 4 4 4 4 4 4
// 5 5 5 5 5 5 5
// 6 6 6 6
// 7 7 7 7
// ---------------------------------------------------------------------
// | | | | | | | | | | |
// V V V V V | | | | | |
// j_tokens | | | | | |
// V V V V V V
// id
{
common_batch_clear(batch);
// current token - first token of the first level
common_batch_add(batch, id, n_past, seq_id_all, true);
// verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
{
const int g_cur = ngrams_observed.cnt[id];
ngrams_cur.resize(g_cur);
for (int g = 0; g < g_cur; g++) {
ngrams_cur[g].active = true;
ngrams_cur[g].tokens.resize(N);
ngrams_cur[g].i_batch.resize(N);
ngrams_cur[g].seq_id = W + 1 + g;
ngrams_cur[g].i_batch[0] = 0;
ngrams_cur[g].tokens [0] = id;
}
for (int j = 0; j < N - 1; j++) {
for (int g = 0; g < g_cur; g++) {
const int idx = id*(N - 1)*G + g*(N - 1);
const llama_token t = ngrams_observed.tokens[idx + j];
ngrams_cur[g].tokens [j + 1] = t;
ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
common_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
}
}
}
// fill the remaining W - 1 tokens for the first level
for (int i = 1; i < W; i++) {
seq_id_look.resize(W - i);
for (int j = 0; j < W - i; j++) {
seq_id_look[j] = i + j + 1;
}
common_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
}
// fill the rest of the levels
for (int j = 1; j < N - 1; j++) {
for (int i = 0; i < W; i++) {
common_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
}
}
}
if (llama_decode(ctx, batch) != 0) {
LOG_ERR("\n\n%s: llama_decode failed - increase KV cache size\n", __func__);
return 1;
}
int seq_id_best = 0;
for (int v = 0; v < N; ++v) {
int i_batch = 0;
// if no active ngrams are left, it means the sampled token does not pass the verification
if (v > 0) {
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
if (ngrams_cur[g].active) {
i_batch = ngrams_cur[g].i_batch[v];
seq_id_best = ngrams_cur[g].seq_id;
++n_accept;
break;
}
}
// no more matches -> create a new batch
if (i_batch == 0) {
break;
}
}
// sample the next token
id = common_sampler_sample(smpl, ctx, i_batch);
common_sampler_accept(smpl, id, true);
// print
{
const std::string token_str = common_token_to_piece(ctx, id);
if (v == 0) {
LOG("%s", token_str.c_str());
} else {
// print light cyan
LOG("\033[0;96m%s\033[0m", token_str.c_str());
}
fflush(stdout);
if (llama_token_is_eog(model, id)) {
has_eos = true;
}
all.push_back(id);
}
++n_predict;
++n_past;
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
break;
}
// verify across active n-grams
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
if (ngrams_cur[g].active) {
if (v == N - 1) {
ngrams_cur[g].active = false;
} else {
if (id != ngrams_cur[g].tokens[v + 1]) {
ngrams_cur[g].active = false;
}
}
}
}
// print known n-grams starting with token id (debug)
if (0 && v == 0) {
if (ngrams_observed.cnt[id] > 0) {
LOG("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], common_token_to_piece(ctx, id).c_str());
}
for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
LOG(" - ngram %2d: ", i);
const int idx = id*(N - 1)*G + i*(N - 1);
for (int j = 0; j < N - 1; j++) {
const std::string token_str = common_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
LOG("%s", token_str.c_str());
}
LOG("\n");
}
}
// update lookahead tokens
{
for (int i = 0; i < W; i++) {
tokens_j_prev[i] = tokens_j[0][i];
}
for (int j = 0; j < N - 2; j++) {
tokens_j[j] = tokens_j[j + 1];
}
if (v == 0) {
// sample from the last level
for (int i = 0; i < W; i++) {
tokens_j[N - 2][i] = common_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
}
} else {
for (int i = 0; i < W; i++) {
// there are different ways to init these tokens
if (0) {
// random init
tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)];
} else {
// init from the previous level
tokens_j[N - 2][i] = tokens_j[0][i];
}
}
}
}
// update observed ngrams
if (v == 0) {
// the first token of the n-gram is determined by the index in the container so it is not stored
std::vector<llama_token> ngram(N - 1);
// n-gram generation
// ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518
for (int f = 0; f < W; ++f) {
const int ft = tokens_j_prev[f]; // first token of the n-gram
for (int j = 0; j < N - 1; ++j) {
ngram[j] = tokens_j[j][f];
}
// filter-out repeating n-grams
{
bool is_unique = true;
for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) {
const int idx = ft*(N - 1)*G + k*(N - 1);
bool is_match = true;
for (int j = 0; j < N - 1; ++j) {
if (ngrams_observed.tokens[idx + j] != ngram[j]) {
is_match = false;
break;
}
}
if (is_match) {
is_unique = false;
break;
}
}
if (!is_unique) {
continue;
}
}
const int head = ngrams_observed.head[ft];
const int idx = ft*(N - 1)*G + head*(N - 1);
for (int i = 0; i < N - 1; i++) {
ngrams_observed.tokens[idx + i] = ngram[i];
}
ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1);
ngrams_observed.head[ft] = (head + 1) % G;
ngrams_observed.n_total++;
}
}
}
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
break;
}
// KV cache management
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
if (seq_id_best != 0) {
// if a verification token matched, we keep the best sequence and remove the rest
// this leads to some KV cache fragmentation
llama_kv_cache_seq_keep(ctx, seq_id_best);
llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
}
}
}
auto t_dec_end = ggml_time_us();
LOG("\n\n");
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_INF("\n");
LOG_INF("W = %2d\n", W);
LOG_INF("N = %2d\n", N);
LOG_INF("G = %2d\n", G);
LOG_INF("\n");
LOG_INF("n_predict = %d\n", n_predict);
LOG_INF("n_accept = %d\n", n_accept);
LOG_INF("\n");
common_perf_print(ctx, smpl);
common_sampler_free(smpl);
llama_kv_cache_view_free(&kvc_view);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
LOG("\n\n");
return 0;
}
|