Spaces:
Runtime error
Runtime error
import Foundation | |
import llama | |
let arguments = CommandLine.arguments | |
// Check that we have at least one argument (the model path) | |
guard arguments.count > 1 else { | |
print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]") | |
exit(1) | |
} | |
let modelPath: String = arguments[1] | |
let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is" | |
let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1 | |
// total length of the sequences including the prompt | |
let n_len: Int = 32 | |
// init LLM | |
llama_backend_init() | |
defer { | |
llama_backend_free() | |
} | |
let model_params = llama_model_default_params() | |
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else { | |
print("Failed to load model") | |
exit(1) | |
} | |
defer { | |
llama_free_model(model) | |
} | |
var tokens = tokenize(text: prompt, add_bos: true) | |
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel) | |
var context_params = llama_context_default_params() | |
context_params.n_ctx = n_kv_req | |
context_params.n_batch = UInt32(max(n_len, n_parallel)) | |
context_params.n_threads = 8 | |
context_params.n_threads_batch = 8 | |
let context = llama_new_context_with_model(model, context_params) | |
guard context != nil else { | |
print("Failed to initialize context") | |
exit(1) | |
} | |
defer { | |
llama_free(context) | |
} | |
var sparams = llama_sampler_chain_default_params() | |
let smpl = llama_sampler_chain_init(sparams) | |
guard smpl != nil else { | |
print("Failed to initialize sampling") | |
exit(1) | |
} | |
defer { | |
llama_sampler_free(smpl) | |
} | |
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(40)); | |
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1)); | |
llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.4)); | |
llama_sampler_chain_add(smpl, llama_sampler_init_dist (1234)); | |
let n_ctx = llama_n_ctx(context) | |
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n") | |
if n_kv_req > n_ctx { | |
print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req) | |
exit(1) | |
} | |
var buffer: [CChar] = [] | |
for id: llama_token in tokens { | |
print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "") | |
} | |
print("\n") | |
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1) | |
defer { | |
llama_batch_free(batch) | |
} | |
// evaluate the initial prompt | |
batch.n_tokens = Int32(tokens.count) | |
for (i, token) in tokens.enumerated() { | |
batch.token[i] = token | |
batch.pos[i] = Int32(i) | |
batch.n_seq_id[i] = 1 | |
// batch.seq_id[i][0] = 0 | |
// TODO: is this the proper way to do this? | |
if let seq_id = batch.seq_id[i] { | |
seq_id[0] = 0 | |
} | |
batch.logits[i] = 0 | |
} | |
// llama_decode will output logits only for the last token of the prompt | |
batch.logits[Int(batch.n_tokens) - 1] = 1 | |
if llama_decode(context, batch) != 0 { | |
print("llama_decode() failed") | |
exit(1) | |
} | |
for i in 1 ..< n_parallel { | |
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens) | |
} | |
if n_parallel > 1 { | |
print("generating \(n_parallel) sequences ...\n") | |
} | |
var streams: [String] = .init(repeating: "", count: n_parallel) | |
var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel) | |
var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel) | |
var n_cur = batch.n_tokens | |
var n_decode = 0 | |
let t_main_start = ggml_time_us() | |
while n_cur <= n_len { | |
// prepare the next batch | |
batch.n_tokens = 0 | |
// sample the next token for each parallel sequence / stream | |
for i in 0 ..< n_parallel { | |
if i_batch[i] < 0 { | |
// the stream has already finished | |
continue | |
} | |
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i]) | |
// is it an end of stream? -> mark the stream as finished | |
if llama_token_is_eog(model, new_token_id) || n_cur == n_len { | |
i_batch[i] = -1 | |
// print("") | |
if n_parallel > 1 { | |
print("stream \(i) finished at n_cur = \(n_cur)") | |
} | |
continue | |
} | |
let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? "" | |
// if there is only one stream, we print immediately to stdout | |
if n_parallel == 1 { | |
print(nextStringPiece, terminator: "") | |
} | |
streams[i] += nextStringPiece | |
// push this new token for next evaluation | |
batch.token[Int(batch.n_tokens)] = new_token_id | |
batch.pos[Int(batch.n_tokens)] = n_cur | |
batch.n_seq_id[Int(batch.n_tokens)] = 1 | |
if let seq_id = batch.seq_id[Int(batch.n_tokens)] { | |
seq_id[0] = Int32(i) | |
} | |
batch.logits[Int(batch.n_tokens)] = 1 | |
i_batch[i] = batch.n_tokens | |
batch.n_tokens += 1 | |
n_decode += 1 | |
} | |
// all streams are finished | |
if batch.n_tokens == 0 { | |
break | |
} | |
n_cur += 1 | |
// evaluate the current batch with the transformer model | |
if llama_decode(context, batch) != 0 { | |
print("llama_decode() failed") | |
exit(1) | |
} | |
} | |
if n_parallel > 1 { | |
print("\n") | |
for (i, stream) in streams.enumerated() { | |
print("sequence \(i):\n\n\(prompt)\(stream)\n") | |
} | |
} | |
let t_main_end = ggml_time_us() | |
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n\n") | |
llama_perf_sampler_print(smpl) | |
llama_perf_context_print(context) | |
private func tokenize(text: String, add_bos: Bool) -> [llama_token] { | |
let utf8Count = text.utf8.count | |
let n_tokens = utf8Count + (add_bos ? 1 : 0) | |
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens) | |
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false) | |
var swiftTokens: [llama_token] = [] | |
for i in 0 ..< tokenCount { | |
swiftTokens.append(tokens[Int(i)]) | |
} | |
tokens.deallocate() | |
return swiftTokens | |
} | |
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? { | |
var result = [CChar](repeating: 0, count: 8) | |
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false) | |
if nTokens < 0 { | |
let actualTokensCount = -Int(nTokens) | |
result = .init(repeating: 0, count: actualTokensCount) | |
let check = llama_token_to_piece( | |
model, | |
token, | |
&result, | |
Int32(result.count), | |
0, | |
false | |
) | |
assert(check == actualTokensCount) | |
} else { | |
result.removeLast(result.count - Int(nTokens)) | |
} | |
if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) { | |
return utfString | |
} else { | |
buffer.append(contentsOf: result) | |
let data = Data(buffer.map { UInt8(bitPattern: $0) }) | |
if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer | |
buffer = [] | |
} | |
guard let bufferString = String(data: data, encoding: .utf8) else { | |
return nil | |
} | |
buffer = [] | |
return bufferString | |
} | |
} | |