Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import json | |
import re | |
import torch | |
import numpy as np | |
from gguf import * | |
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel | |
TEXT = "clip.text" | |
VISION = "clip.vision" | |
def k(raw_key: str, arch: str) -> str: | |
return raw_key.format(arch=arch) | |
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool: | |
if name in ( | |
"logit_scale", | |
"text_model.embeddings.position_ids", | |
"vision_model.embeddings.position_ids", | |
): | |
return True | |
if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]: | |
return True | |
if name.startswith("v") and not has_vision: | |
return True | |
if name.startswith("t") and not has_text: | |
return True | |
return False | |
def get_tensor_name(name: str) -> str: | |
if "projection" in name: | |
return name | |
if "mm_projector" in name: | |
name = name.replace("model.mm_projector", "mm") | |
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) | |
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) | |
return name | |
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a significant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = ( | |
list(range(ord("!"), ord("~") + 1)) | |
+ list(range(ord("¡"), ord("¬") + 1)) | |
+ list(range(ord("®"), ord("ÿ") + 1)) | |
) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8 + n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) | |
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") | |
ap.add_argument("--text-only", action="store_true", required=False, | |
help="Save a text-only model. It can't be used to encode images") | |
ap.add_argument("--vision-only", action="store_true", required=False, | |
help="Save a vision-only model. It can't be used to encode texts") | |
ap.add_argument("--clip-model-is-vision", action="store_true", required=False, | |
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") | |
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, | |
help="The clip model is from openclip (for ViT-SO400M type))") | |
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") | |
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") | |
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) | |
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 | |
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 | |
default_image_mean = [0.48145466, 0.4578275, 0.40821073] | |
default_image_std = [0.26862954, 0.26130258, 0.27577711] | |
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) | |
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) | |
# with proper | |
args = ap.parse_args() | |
if args.text_only and args.vision_only: | |
print("--text-only and --image-only arguments cannot be specified at the same time.") | |
exit(1) | |
if args.use_f32: | |
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") | |
# output in the same directory as the model if output_dir is None | |
dir_model = args.model_dir | |
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: | |
vocab = None | |
tokens = None | |
else: | |
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: | |
vocab = json.load(f) | |
tokens = [key for key in vocab] | |
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: | |
config = json.load(f) | |
if args.clip_model_is_vision: | |
v_hparams = config | |
t_hparams = None | |
else: | |
v_hparams = config["vision_config"] | |
t_hparams = config["text_config"] | |
# possible data types | |
# ftype == 0 -> float32 | |
# ftype == 1 -> float16 | |
# | |
# map from ftype to string | |
ftype_str = ["f32", "f16"] | |
ftype = 1 | |
if args.use_f32: | |
ftype = 0 | |
if args.clip_model_is_vision or args.clip_model_is_openclip: | |
model = CLIPVisionModel.from_pretrained(dir_model) | |
processor = None | |
else: | |
model = CLIPModel.from_pretrained(dir_model) | |
processor = CLIPProcessor.from_pretrained(dir_model) | |
fname_middle = None | |
has_text_encoder = True | |
has_vision_encoder = True | |
has_llava_projector = False | |
if args.text_only: | |
fname_middle = "text-" | |
has_vision_encoder = False | |
elif args.llava_projector is not None: | |
fname_middle = "mmproj-" | |
has_text_encoder = False | |
has_llava_projector = True | |
elif args.vision_only: | |
fname_middle = "vision-" | |
has_text_encoder = False | |
else: | |
fname_middle = "" | |
output_dir = args.output_dir if args.output_dir is not None else dir_model | |
os.makedirs(output_dir, exist_ok=True) | |
output_prefix = os.path.basename(output_dir).replace("ggml_", "") | |
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") | |
fout = GGUFWriter(path=fname_out, arch="clip") | |
fout.add_bool("clip.has_text_encoder", has_text_encoder) | |
fout.add_bool("clip.has_vision_encoder", has_vision_encoder) | |
fout.add_bool("clip.has_llava_projector", has_llava_projector) | |
fout.add_file_type(ftype) | |
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model) | |
fout.add_name(model_name) | |
if args.text_only: | |
fout.add_description("text-only CLIP model") | |
elif args.vision_only and not has_llava_projector: | |
fout.add_description("vision-only CLIP model") | |
elif has_llava_projector: | |
fout.add_description("image encoder for LLaVA") | |
# add projector type | |
fout.add_string("clip.projector_type", args.projector_type) | |
else: | |
fout.add_description("two-tower CLIP model") | |
if has_text_encoder: | |
assert t_hparams is not None | |
assert tokens is not None | |
# text_model hparams | |
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"]) | |
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"]) | |
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"]) | |
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"])) | |
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"]) | |
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"]) | |
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"]) | |
fout.add_token_list(tokens) | |
if has_vision_encoder: | |
# vision_model hparams | |
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"]) | |
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"]) | |
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"]) | |
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"]) | |
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"])) | |
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"]) | |
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"]) | |
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"] | |
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count) | |
# /** | |
# "image_grid_pinpoints": [ | |
# [ | |
# 336, | |
# 672 | |
# ], | |
# [ | |
# 672, | |
# 336 | |
# ], | |
# [ | |
# 672, | |
# 672 | |
# ], | |
# [ | |
# 1008, | |
# 336 | |
# ], | |
# [ | |
# 336, | |
# 1008 | |
# ] | |
# ], | |
# Flattened: | |
# [ | |
# 336, 672, | |
# 672, 336, | |
# 672, 672, | |
# 1008, 336, | |
# 336, 1008 | |
# ] | |
# * | |
# */ | |
if "image_grid_pinpoints" in v_hparams: | |
# flatten it | |
image_grid_pinpoints = [] | |
for pinpoint in v_hparams["image_grid_pinpoints"]: | |
for p in pinpoint: | |
image_grid_pinpoints.append(p) | |
fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints) | |
if "image_crop_resolution" in v_hparams: | |
fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"]) | |
if "image_aspect_ratio" in v_hparams: | |
fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"]) | |
if "image_split_resolution" in v_hparams: | |
fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"]) | |
if "mm_patch_merge_type" in v_hparams: | |
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"]) | |
if "mm_projector_type" in v_hparams: | |
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"]) | |
if processor is not None: | |
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue] | |
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std # pyright: ignore[reportAttributeAccessIssue] | |
else: | |
image_mean = args.image_mean if args.image_mean is not None else default_image_mean | |
image_std = args.image_std if args.image_std is not None else default_image_std | |
fout.add_array("clip.vision.image_mean", image_mean) | |
fout.add_array("clip.vision.image_std", image_std) | |
use_gelu = v_hparams["hidden_act"] == "gelu" | |
fout.add_bool("clip.use_gelu", use_gelu) | |
if has_llava_projector: | |
model.vision_model.encoder.layers.pop(-1) | |
projector = torch.load(args.llava_projector) | |
for name, data in projector.items(): | |
name = get_tensor_name(name) | |
# pw and dw conv ndim==4 | |
if data.ndim == 2 or data.ndim == 4: | |
data = data.squeeze().numpy().astype(np.float16) | |
else: | |
data = data.squeeze().numpy().astype(np.float32) | |
fout.add_tensor(name, data) | |
print("Projector tensors added\n") | |
state_dict = model.state_dict() | |
for name, data in state_dict.items(): | |
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector): | |
# we don't need this | |
print(f"skipping parameter: {name}") | |
continue | |
name = get_tensor_name(name) | |
data = data.squeeze().numpy() | |
n_dims = len(data.shape) | |
# ftype == 0 -> float32, ftype == 1 -> float16 | |
ftype_cur = 0 | |
if n_dims == 4: | |
print(f"tensor {name} is always saved in f16") | |
data = data.astype(np.float16) | |
ftype_cur = 1 | |
elif ftype == 1: | |
if name[-7:] == ".weight" and n_dims == 2: | |
print(" Converting to float16") | |
data = data.astype(np.float16) | |
ftype_cur = 1 | |
else: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
else: | |
if data.dtype != np.float32: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") | |
fout.add_tensor(name, data) | |
fout.write_header_to_file() | |
fout.write_kv_data_to_file() | |
fout.write_tensors_to_file() | |
fout.close() | |
print("Done. Output file: " + fname_out) | |