Spaces:
Runtime error
Runtime error
// RGB uint8 image | |
struct clip_image_u8 { | |
int nx; | |
int ny; | |
std::vector<uint8_t> buf; | |
}; | |
// RGB float32 image (NHWC) | |
// Memory layout: RGBRGBRGB... | |
struct clip_image_f32 { | |
int nx; | |
int ny; | |
std::vector<float> buf; | |
}; | |
struct clip_image_grid_shape { | |
int first; | |
int second; | |
}; | |
/** | |
* Selects the best resolution from a list of possible resolutions based on the original size. | |
* | |
* @param original_size The original size of the image in the format (width, height). | |
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. | |
* @return The best fit resolution in the format (width, height). | |
*/ | |
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) { | |
int original_width = original_size.first; | |
int original_height = original_size.second; | |
std::pair<int, int> best_fit; | |
int max_effective_resolution = 0; | |
int min_wasted_resolution = std::numeric_limits<int>::max(); | |
for (const auto& resolution : possible_resolutions) { | |
int width = resolution.first; | |
int height = resolution.second; | |
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height); | |
int downscaled_width = static_cast<int>(original_width * scale); | |
int downscaled_height = static_cast<int>(original_height * scale); | |
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); | |
int wasted_resolution = (width * height) - effective_resolution; | |
// LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); | |
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { | |
max_effective_resolution = effective_resolution; | |
min_wasted_resolution = wasted_resolution; | |
best_fit = resolution; | |
} | |
} | |
return best_fit; | |
} | |
/** | |
* @brief Get the anyres image grid shape object | |
* | |
* @param image_size | |
* @param grid_pinpoints | |
* @param image_patch_size | |
* @return <int, int> | |
*/ | |
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) { | |
/** | |
Conversion from gguf flat array to vector: | |
std::vector<std::pair<int, int>> possible_resolutions; | |
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) { | |
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]}); | |
} | |
*/ | |
auto best_resolution = select_best_resolution(image_size, grid_pinpoints); | |
return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size}; | |
} | |
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out) | |
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) { | |
struct { | |
struct ggml_context * ctx; | |
} model; | |
const int32_t image_size = clip_image_size(ctx_clip); | |
const int32_t patch_size = clip_patch_size(ctx_clip); | |
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches) | |
int num_patches_width = grid_shape.first; // grid 1-4 | |
int num_patches_height = grid_shape.second; // grid 1-4 | |
const size_t num_images = num_patches_width * num_patches_height + 1; | |
// TODO: size calculation is not calculated - it's only tens of MB | |
size_t ctx_size = 0; | |
{ | |
ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features | |
ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32); | |
} | |
struct ggml_init_params params { | |
/*.mem_size =*/ ctx_size, | |
/*.mem_buffer =*/ NULL, | |
/*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API | |
}; | |
// Python reference code for full unpad: | |
/* | |
base_image_feature = image_feature[0] | |
image_feature = image_feature[1:] | |
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() | |
image_feature = image_feature.flatten(1, 2).flatten(2, 3) | |
image_feature = unpad_image(image_feature, image_sizes[image_idx]) | |
image_feature = torch.cat(( | |
image_feature, | |
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1) | |
), dim=-1) | |
image_feature = image_feature.flatten(1, 2).transpose(0, 1) | |
image_feature = torch.cat((base_image_feature, image_feature), dim=0) | |
*/ | |
// We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval. | |
// In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet. | |
// Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them. | |
// Once all images are processed to prepended the base_image_features without any changes. | |
// Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling)) | |
/* | |
image_feature = image_feature.view(2, 2, 24, 24, 4096) | |
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() | |
image_feature = image_feature.view(2, 24, 2, 24, 4096) | |
image_feature = image_feature.flatten(0, 3) | |
// Reshape to 4D tensor by merging the last two dimensions | |
image_feature = image_feature.view(2, 2, 24, 24*4096) | |
image_feature = image_feature.permute(0, 2, 1, 3).contiguous() | |
image_feature = image_feature.view(-1, 4096) | |
*/ | |
model.ctx = ggml_init(params); | |
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4 | |
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false); | |
// fill it with the image embeddings, ignoring the base | |
for (size_t i = 1; i < num_images; i++) { | |
size_t offset = (i-1) * clip_embd_nbytes(ctx_clip); | |
memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip)); | |
} | |
struct ggml_cgraph * gf = ggml_new_graph(model.ctx); | |
size_t size_ele = ggml_type_size(GGML_TYPE_F32); | |
struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features, | |
num_patches_per_side * clip_n_mmproj_embd(ctx_clip), | |
num_patches_per_side, | |
num_patches_width, | |
num_patches_height, | |
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip), | |
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side, | |
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0); | |
// ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false); | |
struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3)); | |
/** | |
At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings | |
image_feature = torch.cat(( | |
image_feature, | |
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device) | |
), dim=-1) | |
* | |
*/ | |
// ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false); | |
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0); | |
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false); | |
ggml_build_forward_expand(gf, flatten); | |
ggml_graph_compute_with_ctx(model.ctx, gf, 1); | |
struct ggml_tensor* result = ggml_graph_node(gf, -1); | |
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context | |
// append without newline tokens (default behavior in llava_arch when not using unpad ): | |
memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches | |
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip)); | |
// Debug: Test single segments | |
// Current findings: sending base image, sending a segment embedding all works similar to python | |
// However, permuted embeddings do not work yet (stride issue?) | |
// memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context | |
// memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context | |
// *n_img_pos_out=576; | |
ggml_free(model.ctx); | |
return true; | |
} | |
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) { | |
int width = image->nx; | |
int height = image->ny; | |
int num_patches = (height / patch_size) * (width / patch_size); | |
clip_image_f32 * patch = clip_image_f32_init(); | |
patch->nx = patch_size * num_patches; | |
patch->ny = patch_size; | |
patch->buf.resize(3 * patch->nx * patch->ny); | |
int patch_index = 0; | |
for (int i = 0; i < height; i += patch_size) { | |
for (int j = 0; j < width; j += patch_size) { | |
for (int pi = 0; pi < patch_size; ++pi) { | |
for (int pj = 0; pj < patch_size; ++pj) { | |
int input_index = ((i + pi) * width + (j + pj)) * 3; | |
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3; | |
patch->buf[output_index] = image->buf[input_index]; | |
patch->buf[output_index+1] = image->buf[input_index+1]; | |
patch->buf[output_index+2] = image->buf[input_index+2]; | |
} | |
} | |
patch_index++; | |
} | |
} | |
return patch; | |
} | |
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { | |
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336 | |
clip_image_f32_batch img_res_v; | |
img_res_v.size = 0; | |
img_res_v.data = nullptr; | |
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) { | |
LOG_ERR("%s: unable to preprocess image\n", __func__); | |
delete[] img_res_v.data; | |
return false; | |
} | |
const int64_t t_img_enc_start_us = ggml_time_us(); | |
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); | |
if (clip_is_minicpmv(ctx_clip)) { | |
std::vector<float *> image_embd_v; | |
image_embd_v.resize(img_res_v.size); | |
struct clip_image_size * load_image_size = clip_image_size_init(); | |
for (size_t i = 0; i < img_res_v.size; i++) { | |
const int64_t t_img_enc_step_start_us = ggml_time_us(); | |
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); | |
int patch_size=14; | |
load_image_size->width = img_res_v.data[i].nx; | |
load_image_size->height = img_res_v.data[i].ny; | |
clip_add_load_image_size(ctx_clip, load_image_size); | |
bool encoded = false; | |
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip); | |
if (has_minicpmv_projector == 2) { | |
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]); | |
} | |
else if (has_minicpmv_projector == 3) { | |
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); | |
} | |
if (!encoded) { | |
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); | |
return false; | |
} | |
const int64_t t_img_enc_steop_batch_us = ggml_time_us(); | |
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0); | |
} | |
const int64_t t_img_enc_batch_us = ggml_time_us(); | |
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0); | |
int n_img_pos_out = 0; | |
for (size_t i = 0; i < image_embd_v.size(); i++) { | |
std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip)); | |
n_img_pos_out += clip_n_patches(ctx_clip); | |
} | |
*n_img_pos = n_img_pos_out; | |
for (size_t i = 0; i < image_embd_v.size(); i++) { | |
free(image_embd_v[i]); | |
} | |
image_embd_v.clear(); | |
load_image_size->width = img->nx; | |
load_image_size->height = img->ny; | |
clip_add_load_image_size(ctx_clip, load_image_size); | |
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height); | |
} | |
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) { | |
// flat / default llava-1.5 type embedding | |
*n_img_pos = clip_n_patches(ctx_clip); | |
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096 | |
delete[] img_res_v.data; | |
if (!encoded) { | |
LOG_ERR("Unable to encode image\n"); | |
return false; | |
} | |
} | |
else { | |
// spatial_unpad llava-1.6 type embedding | |
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working | |
std::vector<float *> image_embd_v; | |
image_embd_v.resize(img_res_v.size); | |
for (size_t i = 0; i < img_res_v.size; i++) { | |
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184 | |
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside | |
if (!encoded) { | |
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); | |
return false; | |
} | |
} | |
const int64_t t_img_enc_batch_us = ggml_time_us(); | |
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0); | |
const int32_t * image_grid = clip_image_grid(ctx_clip); | |
std::vector<std::pair<int, int>> grid_pinpoints; | |
for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) { | |
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]}); | |
} | |
// free all img_res_v - not needed anymore | |
delete[] img_res_v.data; | |
img_res_v.size = 0; | |
img_res_v.data = nullptr; | |
const int32_t image_size = clip_image_size(ctx_clip); | |
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size); | |
int n_img_pos_out; | |
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out); | |
*n_img_pos = n_img_pos_out; | |
for (size_t i = 0; i < image_embd_v.size(); i++) { | |
free(image_embd_v[i]); | |
} | |
image_embd_v.clear(); | |
// debug image/segment/normalization content: | |
// clip_image_u8 * tmp = clip_image_u8_init(); | |
// clip_image_convert_f32_to_u8(*image_feature, *tmp); | |
// clip_image_save_to_bmp(*tmp, "image_feature.bmp"); | |
} | |
LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); | |
const int64_t t_img_enc_end_us = ggml_time_us(); | |
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0; | |
LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos); | |
return true; | |
} | |
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) { | |
// make sure that the correct mmproj was used, i.e., compare apples to apples | |
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama)); | |
auto n_image_embd = clip_n_mmproj_embd(ctx_clip); | |
if (n_image_embd != n_llama_embd) { | |
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd); | |
return false; | |
} | |
return true; | |
} | |
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { | |
int num_max_patches = 6; | |
if (clip_is_minicpmv(ctx_clip)) { | |
num_max_patches = 10; | |
} | |
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model | |
if (!image_embd) { | |
LOG_ERR("Unable to allocate memory for image embeddings\n"); | |
return false; | |
} | |
int n_img_pos; | |
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) { | |
LOG_ERR("%s: cannot encode image, aborting\n", __func__); | |
free(image_embd); | |
return false; | |
} | |
*image_embd_out = image_embd; | |
*n_img_pos_out = n_img_pos; | |
return true; | |
} | |
struct llava_embd_batch { | |
std::vector<llama_pos> pos; | |
std::vector<int32_t> n_seq_id; | |
std::vector<llama_seq_id> seq_id_0; | |
std::vector<llama_seq_id *> seq_ids; | |
std::vector<int8_t> logits; | |
llama_batch batch; | |
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) { | |
pos .resize(n_tokens); | |
n_seq_id.resize(n_tokens); | |
seq_ids .resize(n_tokens + 1); | |
logits .resize(n_tokens); | |
seq_id_0.resize(1); | |
seq_id_0[0] = seq_id; | |
seq_ids [n_tokens] = nullptr; | |
batch = { | |
/*n_tokens =*/ n_tokens, | |
/*tokens =*/ nullptr, | |
/*embd =*/ embd, | |
/*pos =*/ pos.data(), | |
/*n_seq_id =*/ n_seq_id.data(), | |
/*seq_id =*/ seq_ids.data(), | |
/*logits =*/ logits.data(), | |
}; | |
for (int i = 0; i < n_tokens; i++) { | |
batch.pos [i] = pos_0 + i; | |
batch.n_seq_id[i] = 1; | |
batch.seq_id [i] = seq_id_0.data(); | |
batch.logits [i] = false; | |
} | |
} | |
}; | |
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) { | |
int n_embd = llama_n_embd(llama_get_model(ctx_llama)); | |
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) { | |
int n_eval = image_embed->n_image_pos - i; | |
if (n_eval > n_batch) { | |
n_eval = n_batch; | |
} | |
float * embd = image_embed->embed+i*n_embd; | |
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0); | |
if (llama_decode(ctx_llama, llava_batch.batch)) { | |
LOG_ERR("%s : failed to eval\n", __func__); | |
return false; | |
} | |
*n_past += n_eval; | |
} | |
return true; | |
} | |
struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) { | |
clip_image_u8 * img = clip_image_u8_init(); | |
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) { | |
clip_image_u8_free(img); | |
LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__); | |
return NULL; | |
} | |
float* image_embed = NULL; | |
int n_image_pos = 0; | |
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos); | |
if (!image_embed_result) { | |
clip_image_u8_free(img); | |
LOG_ERR("%s: couldn't embed the image\n", __func__); | |
return NULL; | |
} | |
clip_image_u8_free(img); | |
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed)); | |
result->embed = image_embed; | |
result->n_image_pos = n_image_pos; | |
return result; | |
} | |
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) { | |
auto file = fopen(path, "rb"); | |
if (file == NULL) { | |
LOG_ERR("%s: can't read file %s\n", __func__, path); | |
return false; | |
} | |
fseek(file, 0, SEEK_END); | |
auto fileSize = ftell(file); | |
fseek(file, 0, SEEK_SET); | |
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data | |
if (buffer == NULL) { | |
LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path); | |
perror("Memory allocation error"); | |
fclose(file); | |
return false; | |
} | |
errno = 0; | |
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer | |
if (ferror(file)) { | |
die_fmt("read error: %s", strerror(errno)); | |
} | |
if (ret != (size_t) fileSize) { | |
die("unexpectedly reached end of file"); | |
} | |
fclose(file); // Close the file | |
*bytesOut = buffer; | |
*sizeOut = fileSize; | |
return true; | |
} | |
struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { | |
unsigned char* image_bytes; | |
long image_bytes_length; | |
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length); | |
if (!loaded) { | |
LOG_ERR("%s: failed to load %s\n", __func__, image_path); | |
return NULL; | |
} | |
llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length); | |
free(image_bytes); | |
return embed; | |
} | |
void llava_image_embed_free(struct llava_image_embed * embed) { | |
free(embed->embed); | |
free(embed); | |
} | |