Spaces:
Runtime error
Runtime error
import argparse | |
import glob | |
import os | |
import torch | |
from safetensors import safe_open | |
from safetensors.torch import save_file | |
from typing import Any, ContextManager, cast | |
# Function to determine if file is a SafeTensor file | |
def is_safetensor_file(file_path): | |
return file_path.endswith('.safetensors') | |
# Unified loading function | |
def load_model(file_path): | |
if is_safetensor_file(file_path): | |
tensors = {} | |
with cast(ContextManager[Any], safe_open(file_path, framework="pt", device="cpu")) as f: | |
for key in f.keys(): | |
tensors[key] = f.get_tensor(key).clone() | |
# output shape | |
print(f"{key} : {tensors[key].shape}") | |
return tensors, 'safetensor' | |
else: | |
return torch.load(file_path, map_location=torch.device('cpu')), 'pytorch' | |
# Unified saving function | |
def save_model(model, file_path, file_type): | |
if file_type == 'safetensor': | |
# safe_save(model, file_path) | |
save_file(model, file_path) | |
else: | |
torch.save(model, file_path) | |
# Adapted function to clean vision tower from checkpoint | |
def clean_vision_tower_from_checkpoint(checkpoint_path): | |
checkpoint, file_type = load_model(checkpoint_path) | |
# file_type = 'pytorch' | |
model_path = os.path.dirname(checkpoint_path) | |
print(f"Searching for vision tower tensors in {checkpoint_path}") | |
clip_tensors = [k for k, v in checkpoint.items() if (k.startswith("model.vision_tower") or k.startswith("vit."))] | |
if len(clip_tensors) > 0: | |
print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}") | |
# Adapted for file type | |
clip_path = os.path.join(model_path, "llava.clip") | |
if os.path.exists(clip_path): | |
print(f"Loading existing llava.clip from {clip_path}") | |
existing_clip, _ = load_model(clip_path) | |
else: | |
print(f"Creating new llava.clip at {clip_path}") | |
existing_clip = {} | |
# Update existing_clip with new tensors, avoid duplicates | |
for name in clip_tensors: | |
simple_name = name[name.index('vision_model.'):] if 'vision_model.' in name else name | |
print(f"Adding {simple_name} to llava.clip") | |
if simple_name not in existing_clip: | |
existing_clip[simple_name] = checkpoint[name] | |
# Save the updated clip tensors back to llava.clip | |
save_model(existing_clip, clip_path, 'pytorch') | |
# Remove the tensors from the original checkpoint | |
for name in clip_tensors: | |
del checkpoint[name] | |
checkpoint_path = checkpoint_path | |
return True | |
return False | |
def find_relevant_checkpoints(checkpoint_paths, newline_criteria, projector): | |
newline_checkpoint_path = None | |
projector_checkpoint_path = None | |
for path in checkpoint_paths: | |
checkpoint, _ = load_model(path) | |
if newline_criteria(checkpoint) and newline_checkpoint_path is None: | |
newline_checkpoint_path = path | |
if projector(checkpoint): | |
projector_checkpoint_path = path | |
return newline_checkpoint_path, projector_checkpoint_path | |
def newline_criteria(checkpoint): | |
return any(k.startswith("model.image_newline") for k in checkpoint.keys()) | |
def proj_criteria(checkpoint): | |
return any(k.startswith("model.mm_projector") or k.startswith("vision_proj.") for k in checkpoint.keys()) | |
# Command-line interface setup | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-m", "--model", required=True, help="Path to LLaVA v1.5+ model") | |
ap.add_argument("-C", "--clean-vision-tower", action="store_true", help="Remove any vision tower from the model files") | |
args = ap.parse_args() | |
if args.clean_vision_tower: | |
# Generalized to handle both PyTorch and SafeTensors models | |
model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True) | |
# checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and path.startswith('pytorch')) or (path.endswith('.safetensors') and path.startswith('model'))] | |
checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])] | |
for projector_checkpoint_path in checkpoint_paths: | |
print(f"Cleaning {projector_checkpoint_path}") | |
if not clean_vision_tower_from_checkpoint(projector_checkpoint_path): | |
print(f"No vision tower found in {projector_checkpoint_path}") | |
# we break once none is found, so far all models append them at the end | |
# break | |
print("Done! All vision tower tensors are removed from the model files and stored in llava.clip file.") | |
# Now we look for the projector in the last checkpoint | |
model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True) | |
checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])] | |
# last_checkpoint_path = checkpoint_paths[0] | |
# first_checkpoint_path = checkpoint_paths[-1] | |
newline_checkpoint_path, projector_checkpoint_path = find_relevant_checkpoints(checkpoint_paths, newline_criteria, proj_criteria) | |
print(f"Taking projector from {projector_checkpoint_path}") | |
first_mm_tensors = [] | |
first_checkpoint = None | |
if newline_checkpoint_path is not None: | |
print(f"Taking newline from {newline_checkpoint_path}") | |
first_checkpoint, file_type = load_model(newline_checkpoint_path) | |
first_mm_tensors = [k for k, v in first_checkpoint.items() if k.startswith("model.image_newline")] | |
# Load the checkpoint | |
mm_tensors = [] | |
last_checkpoint = None | |
if projector_checkpoint_path is not None: | |
last_checkpoint, file_type = load_model(projector_checkpoint_path) | |
mm_tensors = [k for k, v in last_checkpoint.items() if k.startswith("model.mm_projector") or k.startswith("vision_proj.")] | |
if len(mm_tensors) == 0: | |
if last_checkpoint is not None: | |
for k, v in last_checkpoint.items(): | |
print(k) | |
print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint) if last_checkpoint is not None else 0} tensors.") | |
print("No tensors found. Is this a LLaVA model?") | |
exit() | |
print(f"Found {len(mm_tensors)} tensors to extract.") | |
print(f"Found additional {len(first_mm_tensors)} tensors to extract.") | |
# projector = {name: checkpoint.[name].float() for name in mm_tensors} | |
projector = {} | |
for name in mm_tensors: | |
assert last_checkpoint is not None | |
projector[name] = last_checkpoint[name].float() | |
for name in first_mm_tensors: | |
assert first_checkpoint is not None | |
projector[name] = first_checkpoint[name].float() | |
if len(projector) > 0: | |
save_model(projector, f"{args.model}/llava.projector", 'pytorch') | |
print("Done!") | |
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.") | |
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.") | |