Spaces:
Runtime error
Runtime error
struct llava_context { | |
struct clip_ctx * ctx_clip = NULL; | |
struct llama_context * ctx_llama = NULL; | |
struct llama_model * model = NULL; | |
}; | |
static void show_additional_info(int /*argc*/, char ** argv) { | |
LOG("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); | |
LOG("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n"); | |
} | |
static struct llama_model * llava_init(common_params * params) { | |
llama_backend_init(); | |
llama_numa_init(params->numa); | |
llama_model_params model_params = common_model_params_to_llama(*params); | |
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params); | |
if (model == NULL) { | |
LOG_ERR("%s: unable to load model\n" , __func__); | |
return NULL; | |
} | |
return model; | |
} | |
static struct llava_context * llava_init_context(common_params * params, llama_model * model) { | |
auto prompt = params->prompt; | |
if (prompt.empty()) { | |
prompt = "describe the image in detail."; | |
} | |
llama_context_params ctx_params = common_context_params_to_llama(*params); | |
if (params->n_ctx < 2048) { | |
// warn user here, "Image processing requires at least 2048 context, setting context to 2048" | |
LOG_WRN("%s: Image processing requires at least 2048 context, setting context to 2048\n" , __func__); | |
ctx_params.n_ctx = 2048; | |
} else { | |
ctx_params.n_ctx = params->n_ctx; | |
} | |
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params); | |
if (ctx_llama == NULL) { | |
LOG_ERR("%s: failed to create the llama_context\n" , __func__); | |
return NULL; | |
} | |
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); | |
ctx_llava->ctx_llama = ctx_llama; | |
ctx_llava->model = model; | |
return ctx_llava; | |
} | |
static void llava_free(struct llava_context * ctx_llava) { | |
if (ctx_llava->ctx_clip) { | |
clip_free(ctx_llava->ctx_clip); | |
ctx_llava->ctx_clip = NULL; | |
} | |
llama_free(ctx_llava->ctx_llama); | |
llama_free_model(ctx_llava->model); | |
llama_backend_free(); | |
} | |
static struct clip_ctx * clip_init_context(common_params * params) { | |
const char * clip_path = params->mmproj.c_str(); | |
auto prompt = params->prompt; | |
if (prompt.empty()) { | |
prompt = "describe the image in detail."; | |
} | |
auto * ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); | |
return ctx_clip; | |
} | |
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) { | |
int N = (int) tokens.size(); | |
for (int i = 0; i < N; i += n_batch) { | |
int n_eval = (int) tokens.size() - i; | |
if (n_eval > n_batch) { | |
n_eval = n_batch; | |
} | |
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) { | |
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); | |
return false; | |
} | |
*n_past += n_eval; | |
} | |
return true; | |
} | |
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) { | |
std::vector<llama_token> tokens; | |
tokens.push_back(id); | |
return eval_tokens(ctx_llama, tokens, 1, n_past); | |
} | |
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){ | |
std::string str2 = str; | |
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true); | |
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past); | |
} | |
static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) { | |
float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip)); | |
std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip)); | |
auto * slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed)); | |
slice_embed->embed = image_embed; | |
slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip); | |
llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past); | |
llava_image_embed_free(slice_embed); | |
} | |
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, common_params * params, int &n_past) { | |
std::string system_prompt; | |
int idx = 0; | |
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip); | |
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip); | |
if (has_minicpmv_projector == 2) { | |
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"; | |
} | |
else if (has_minicpmv_projector == 3) { | |
system_prompt = "<|im_start|>user\n"; | |
} | |
LOG_INF("%s: image token past: %d\n", __func__, n_past); | |
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false); | |
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++); | |
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false); | |
if (num_image_embeds > 1) { | |
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip); | |
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false); | |
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) { | |
for (size_t j = 0; j < num_image_embeds_col; ++j) { | |
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false); | |
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++); | |
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false); | |
if (j == num_image_embeds_col - 1) { | |
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false); | |
} | |
} | |
} | |
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false); | |
} | |
LOG_INF("%s: image token past: %d\n", __func__, n_past); | |
} | |
static const char * sample(struct common_sampler * smpl, | |
struct llama_context * ctx_llama, | |
int * n_past) { | |
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1); | |
common_sampler_accept(smpl, id, true); | |
static std::string ret; | |
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) { | |
ret = "</s>"; | |
} else { | |
ret = common_token_to_piece(ctx_llama, id); | |
} | |
eval_id(ctx_llama, id, n_past); | |
return ret.c_str(); | |
} | |
static struct llava_context * minicpmv_init(common_params * params, const std::string & fname, int &n_past){ | |
auto * ctx_clip = clip_init_context(params); | |
auto * embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str()); | |
if (!embeds) { | |
LOG_ERR("failed to load image %s. Terminating\n\n", fname.c_str()); | |
return NULL; | |
} | |
// process the prompt | |
if (params->prompt.empty() && params->interactive == false) { | |
LOG_ERR("prompt should be given or interactive mode should be on"); | |
return NULL; | |
} | |
auto * model = llava_init(params); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__); | |
return NULL; | |
} | |
const int64_t t_llava_init_start_us = ggml_time_us(); | |
auto * ctx_llava = llava_init_context(params, model); | |
ctx_llava->ctx_clip = ctx_clip; | |
const int64_t t_llava_init_end_us = ggml_time_us(); | |
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0; | |
LOG_INF("%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms); | |
const int64_t t_process_image_start_us = ggml_time_us(); | |
process_image(ctx_llava, embeds, params, n_past); | |
const int64_t t_process_image_end_us = ggml_time_us(); | |
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0; | |
LOG_INF("%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms); | |
llava_image_embed_free(embeds); | |
return ctx_llava; | |
} | |
static struct common_sampler * llama_init(struct llava_context * ctx_llava, common_params * params, const std::string & prompt, int & n_past, bool is_first = false){ | |
std::string user_prompt = prompt; | |
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip); | |
if (!is_first) { | |
if (has_minicpmv_projector == 2) { | |
user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt; | |
} | |
else if (has_minicpmv_projector == 3) { | |
user_prompt = "<|im_start|>user\n" + prompt; | |
} | |
} | |
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false); | |
if (has_minicpmv_projector == 2) { | |
eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false); | |
} | |
else if (has_minicpmv_projector == 3) { | |
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false); | |
} | |
// generate the response | |
LOG_INF("\n"); | |
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams); | |
return smpl; | |
} | |
static const char * llama_loop(struct llava_context * ctx_llava,struct common_sampler * smpl, int &n_past){ | |
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past); | |
return tmp; | |
} | |
int main(int argc, char ** argv) { | |
ggml_time_init(); | |
common_params params; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) { | |
return 1; | |
} | |
common_init(); | |
if (params.mmproj.empty() || (params.image.empty())) { | |
show_additional_info(argc, argv); | |
return 1; | |
} | |
for (auto & image : params.image) { | |
int n_past = 0; | |
auto * ctx_llava = minicpmv_init(¶ms, image, n_past); | |
if (!params.prompt.empty()) { | |
LOG("<user>%s\n", params.prompt.c_str()); | |
LOG("<assistant>"); | |
auto * smpl = llama_init(ctx_llava, ¶ms, params.prompt, n_past, true); | |
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict; | |
std::string response; | |
bool have_tmp = false; | |
for (int i = 0; i < max_tgt_len; i++) { | |
const auto * tmp = llama_loop(ctx_llava, smpl, n_past); | |
response += tmp; | |
if (strcmp(tmp, "</s>") == 0){ | |
if (!have_tmp) { | |
continue; | |
} | |
break; | |
} | |
if (strstr(tmp, "###")) break; // Yi-VL behavior | |
have_tmp = true; | |
printf("%s", tmp); | |
if (strstr(response.c_str(), "<user>")) break; // minicpm-v | |
fflush(stdout); | |
} | |
common_sampler_free(smpl); | |
}else { | |
while (true) { | |
LOG("<user>"); | |
std::string prompt; | |
std::getline(std::cin, prompt); | |
LOG("<assistant>"); | |
auto * smpl = llama_init(ctx_llava, ¶ms, prompt, n_past, true); | |
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict; | |
std::string response; | |
for (int i = 0; i < max_tgt_len; i++) { | |
const auto * tmp = llama_loop(ctx_llava, smpl, n_past); | |
response += tmp; | |
if (strcmp(tmp, "</s>") == 0) break; | |
if (strstr(tmp, "###")) break; // Yi-VL behavior | |
printf("%s", tmp);// mistral llava-1.6 | |
if (strstr(response.c_str(), "<user>")) break; // minicpm-v | |
fflush(stdout); | |
} | |
common_sampler_free(smpl); | |
} | |
} | |
printf("\n"); | |
llama_perf_context_print(ctx_llava->ctx_llama); | |
ctx_llava->model = NULL; | |
llava_free(ctx_llava); | |
} | |
return 0; | |
} | |