Spaces:
Runtime error
Runtime error
static void print_usage(int, char ** argv) { | |
LOG("\nexample usage:\n"); | |
LOG("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]); | |
LOG("\n"); | |
} | |
int main(int argc, char ** argv) { | |
common_params params; | |
params.n_junk = 250; | |
params.n_keep = 32; | |
params.i_pos = -1; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) { | |
return 1; | |
} | |
common_init(); | |
int n_junk = params.n_junk; | |
int n_keep = params.n_keep; | |
int n_grp = params.grp_attn_n; | |
int i_pos = params.i_pos; | |
if (i_pos == -1) { | |
i_pos = rand() % n_junk; | |
} | |
const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there."; | |
const std::string prompt_suffix = " What is the pass key? The pass key is"; | |
// generate junk text | |
params.prompt = prompt_prefix; | |
const int passkey = rand() % 50000 + 1; | |
for (int i = 0; i < n_junk; i++) { | |
if (i % n_junk == i_pos) { | |
params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key."; | |
} | |
params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again."; | |
} | |
params.prompt += prompt_suffix; | |
// init LLM | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
// initialize the model | |
llama_model_params model_params = common_model_params_to_llama(params); | |
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); | |
if (model == NULL) { | |
LOG_ERR("%s: unable to load model\n" , __func__); | |
return 1; | |
} | |
// initialize the context | |
llama_context_params ctx_params = common_context_params_to_llama(params); | |
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep; | |
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp"); | |
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | |
if (ctx == NULL) { | |
LOG_ERR("%s: failed to create the llama_context\n" , __func__); | |
return 1; | |
} | |
auto sparams = llama_sampler_chain_default_params(); | |
llama_sampler * smpl = llama_sampler_chain_init(sparams); | |
llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); | |
// tokenize the prompt | |
std::vector<llama_token> tokens_list; | |
tokens_list = common_tokenize(ctx, params.prompt, true); | |
// tokenize the prefix and use it as a sink | |
const int n_tokens_prefix = common_tokenize(ctx, prompt_prefix, true).size(); | |
const int n_tokens_all = tokens_list.size(); | |
// we leave a margin of 16 tokens for the generated text - it should contain just the passkey | |
const int n_predict = 16; | |
// total length of the sequences including the prompt | |
const int n_len = n_tokens_all + n_predict; | |
const int n_ctx = llama_n_ctx(ctx) - n_keep; | |
const int n_kv_req = llama_n_ctx(ctx); | |
const int n_batch = ctx_params.n_batch; | |
const int n_batch_grp = ctx_params.n_batch/n_grp; | |
LOG_INF("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos); | |
// print the prompt token-by-token | |
LOG_INF("\n"); | |
LOG_INF("prefix tokens: %d\n", n_tokens_prefix); | |
LOG_INF("prompt tokens: %d\n", n_tokens_all); | |
//LOG_INF("prompt: %s\n", params.prompt.c_str()); | |
llama_batch batch = llama_batch_init(params.n_batch, 0, 1); | |
int n_past = 0; | |
// fill the KV cache | |
for (int i = 0; i < n_ctx; i += n_batch) { | |
if (i > 0 && n_grp > 1) { | |
// if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp | |
const int ib = i/n_batch - 1; | |
const int bd = n_batch_grp*(n_grp - 1); | |
llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd); | |
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp); | |
llama_kv_cache_update (ctx); | |
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1; | |
} | |
common_batch_clear(batch); | |
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) { | |
common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false); | |
} | |
if (i + n_batch >= n_tokens_all) { | |
batch.logits[batch.n_tokens - 1] = true; | |
} | |
if (llama_decode(ctx, batch) != 0) { | |
LOG_INF("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
LOG_INF("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all)); | |
if (i + n_batch >= n_tokens_all) { | |
break; | |
} | |
} | |
for (int i = n_ctx; i < n_tokens_all; i += n_batch) { | |
const int n_discard = n_batch; | |
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard); | |
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard); | |
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); | |
//llama_kv_cache_defrag (ctx); | |
llama_kv_cache_update (ctx); | |
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1; | |
common_batch_clear(batch); | |
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) { | |
common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false); | |
} | |
if (i + n_batch >= n_tokens_all) { | |
batch.logits[batch.n_tokens - 1] = true; | |
} | |
if (llama_decode(ctx, batch) != 0) { | |
LOG_ERR("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
LOG_INF("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all)); | |
} | |
{ | |
const int n_discard = n_past - n_ctx + n_predict; | |
if (n_discard > 0) { | |
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard); | |
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard); | |
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); | |
//llama_kv_cache_defrag (ctx); | |
llama_kv_cache_update (ctx); | |
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1; | |
} | |
} | |
LOG_INF("\n"); | |
LOG_INF("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk); | |
LOG_INF("\n"); | |
// main loop | |
int n_cur = n_tokens_all; | |
int n_decode = 0; | |
LOG_INF("%s", prompt_suffix.c_str()); | |
const auto t_main_start = ggml_time_us(); | |
while (n_cur <= n_len) { | |
// sample the next token | |
{ | |
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1); | |
// is it an end of generation? | |
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) { | |
LOG("\n"); | |
break; | |
} | |
LOG("%s", common_token_to_piece(ctx, new_token_id).c_str()); | |
n_decode += 1; | |
// prepare the next batch | |
common_batch_clear(batch); | |
// push this new token for next evaluation | |
common_batch_add(batch, new_token_id, n_past++, { 0 }, true); | |
} | |
n_cur += 1; | |
// evaluate the current batch with the transformer model | |
if (llama_decode(ctx, batch)) { | |
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1); | |
return 1; | |
} | |
} | |
LOG("\n"); | |
const auto t_main_end = ggml_time_us(); | |
LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", | |
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); | |
LOG("\n"); | |
llama_perf_context_print(ctx); | |
LOG("\n"); | |
llama_sampler_free(smpl); | |
llama_batch_free(batch); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |