Spaces:
Runtime error
Runtime error
static void print_usage(int, char ** argv) { | |
printf("\nexample usage:\n"); | |
printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]); | |
printf("\n"); | |
} | |
int main(int argc, char ** argv) { | |
// path to the model gguf file | |
std::string model_path; | |
// prompt to generate text from | |
std::string prompt = "Hello my name is"; | |
// number of layers to offload to the GPU | |
int ngl = 99; | |
// number of tokens to predict | |
int n_predict = 32; | |
// parse command line arguments | |
{ | |
int i = 1; | |
for (; i < argc; i++) { | |
if (strcmp(argv[i], "-m") == 0) { | |
if (i + 1 < argc) { | |
model_path = argv[++i]; | |
} else { | |
print_usage(argc, argv); | |
return 1; | |
} | |
} else if (strcmp(argv[i], "-n") == 0) { | |
if (i + 1 < argc) { | |
try { | |
n_predict = std::stoi(argv[++i]); | |
} catch (...) { | |
print_usage(argc, argv); | |
return 1; | |
} | |
} else { | |
print_usage(argc, argv); | |
return 1; | |
} | |
} else if (strcmp(argv[i], "-ngl") == 0) { | |
if (i + 1 < argc) { | |
try { | |
ngl = std::stoi(argv[++i]); | |
} catch (...) { | |
print_usage(argc, argv); | |
return 1; | |
} | |
} else { | |
print_usage(argc, argv); | |
return 1; | |
} | |
} else { | |
// prompt starts here | |
break; | |
} | |
} | |
if (model_path.empty()) { | |
print_usage(argc, argv); | |
return 1; | |
} | |
if (i < argc) { | |
prompt = argv[i++]; | |
for (; i < argc; i++) { | |
prompt += " "; | |
prompt += argv[i]; | |
} | |
} | |
} | |
// initialize the model | |
llama_model_params model_params = llama_model_default_params(); | |
model_params.n_gpu_layers = ngl; | |
llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); | |
if (model == NULL) { | |
fprintf(stderr , "%s: error: unable to load model\n" , __func__); | |
return 1; | |
} | |
// tokenize the prompt | |
// find the number of tokens in the prompt | |
const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); | |
// allocate space for the tokens and tokenize the prompt | |
std::vector<llama_token> prompt_tokens(n_prompt); | |
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { | |
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); | |
return 1; | |
} | |
// initialize the context | |
llama_context_params ctx_params = llama_context_default_params(); | |
// n_ctx is the context size | |
ctx_params.n_ctx = n_prompt + n_predict - 1; | |
// n_batch is the maximum number of tokens that can be processed in a single call to llama_decode | |
ctx_params.n_batch = n_prompt; | |
// enable performance counters | |
ctx_params.no_perf = false; | |
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | |
if (ctx == NULL) { | |
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | |
return 1; | |
} | |
// initialize the sampler | |
auto sparams = llama_sampler_chain_default_params(); | |
sparams.no_perf = false; | |
llama_sampler * smpl = llama_sampler_chain_init(sparams); | |
llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); | |
// print the prompt token-by-token | |
for (auto id : prompt_tokens) { | |
char buf[128]; | |
int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true); | |
if (n < 0) { | |
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); | |
return 1; | |
} | |
std::string s(buf, n); | |
printf("%s", s.c_str()); | |
} | |
// prepare a batch for the prompt | |
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); | |
// main loop | |
const auto t_main_start = ggml_time_us(); | |
int n_decode = 0; | |
llama_token new_token_id; | |
for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) { | |
// evaluate the current batch with the transformer model | |
if (llama_decode(ctx, batch)) { | |
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); | |
return 1; | |
} | |
n_pos += batch.n_tokens; | |
// sample the next token | |
{ | |
new_token_id = llama_sampler_sample(smpl, ctx, -1); | |
// is it an end of generation? | |
if (llama_token_is_eog(model, new_token_id)) { | |
break; | |
} | |
char buf[128]; | |
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true); | |
if (n < 0) { | |
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); | |
return 1; | |
} | |
std::string s(buf, n); | |
printf("%s", s.c_str()); | |
fflush(stdout); | |
// prepare the next batch with the sampled token | |
batch = llama_batch_get_one(&new_token_id, 1); | |
n_decode += 1; | |
} | |
} | |
printf("\n"); | |
const auto t_main_end = ggml_time_us(); | |
fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", | |
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); | |
fprintf(stderr, "\n"); | |
llama_perf_sampler_print(smpl); | |
llama_perf_context_print(ctx); | |
fprintf(stderr, "\n"); | |
llama_sampler_free(smpl); | |
llama_free(ctx); | |
llama_free_model(model); | |
return 0; | |
} | |