import os #from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader #from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma import configparser from tqdm import tqdm from langchain.vectorstores import Pinecone from langchain.schema import Document import pinecone from dotenv import load_dotenv from llm import LLMManager class EmbeddingsManager: def __init__(self,settings, emb="hkunlp/instructor-large"): #Loading env variables load_dotenv() #Loading config file self.config=configparser.ConfigParser() self.config.read("config.ini") #Loading settingManager self.set=settings #Loading default parameters for search self.search_method=self.set.search_method self.n_doc_return=self.set.n_doc_return self.ai_assisted_search=self.config.getboolean('RAG','default_ai_assisted_search') self.available_search_methods=self.set.available_search_methods self.text_split_size=self.config.getint('RAG','default_text_split_size') self.text_overlap=self.config.getint('RAG','default_text_overlap') #Loading available Vector Stores self.vector_stores=self.get_vector_list() self.vector_stores_map=self.get_vector_map_list() #Selecting the embeddings model self.embedding_model_name=emb #Initing current_dir = os.path.dirname(__file__) data_dir = os.path.join(current_dir, "data") os.environ['TRANSFORMERS_CACHE'] = data_dir PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY') PINECONE_API_ENV = os.environ.get('PINECONE_API_ENV') self.embeddings_model = SentenceTransformerEmbeddings(model_name=self.embedding_model_name, cache_folder=data_dir) pinecone.init(api_key=PINECONE_API_KEY,environment=PINECONE_API_ENV) #This function used to get the list of emb def get_emb_list(self): """Returns a list of the available Embedding models""" emb_map_section = 'EMB' if emb_map_section in self.config: return [self.config.get(emb_map_section, emb) for emb in self.config[emb_map_section]] else: return [] #This function used to get the list of available VectorStores def get_vector_list(self): """Returns a list of the available Vector Stores""" section = 'Vector_Stores' if section in self.config: return [self.config.get(section, vector) for vector in self.config[section]] else: return [] #This function used to get the map of available VectorStores def get_vector_map_list(self): """Returns a list of the available Vector Stores""" section = 'Vector_Stores_Map' if section in self.config: return [self.config.get(section, vector) for vector in self.config[section]] else: return [] #This function is used to get the relevant context def get_context(self,index, query, history): """Returns the relevant context for the LLM""" docsearch = Pinecone.from_existing_index(index, self.embeddings_model) if self.set.ai_assisted_search: prompt=self.set.default_ai_search_prompt prompt=prompt.format(question=query,history=history) print(prompt) llm=LLMManager(self.set) queryterms=llm.get_query_terms(prompt) query=queryterms+"\n"+query #print("new query input={new_query}".format(new_query=query)) if self.set.search_method=="MMR": return docsearch.max_marginal_relevance_search(query, k=self.set.n_doc_return,fetch_metadata=True) elif self.set.search_method=="Similarity": return docsearch.similarity_search(query, k=self.set.n_doc_return,fetch_metadata=True) else: return docsearch.max_marginal_relevance_search(query, k=self.set.n_doc_return,fetch_metadata=True) #This function is used to get the relevant context def get_context_search(self,index, query): """Returns the relevant context for the LLM""" docsearch = Pinecone.from_existing_index(index, self.embeddings_model) if self.set.search_method=="MMR": return docsearch.max_marginal_relevance_search(query, k=2,fetch_metadata=True) elif self.set.search_method=="Similarity": return docsearch.similarity_search(query, k=2,fetch_metadata=True) else: return docsearch.max_marginal_relevance_search(query, k=self.n_doc_return,fetch_metadata=True) #This function is used to get the relevant context formatted def get_formatted_context(self,index, query,history): """Returns the relevant context for the LLM formatted""" formatted="" docs=self.get_context(index, query,history) for doc in docs: formatted+="DOCUMENT NAME={doc_name}\nDOCUMENT CONTENT={doc_content}\n\n".format(doc_name=doc.metadata["source"],doc_content=doc.page_content) return formatted #This function is used to add documents to an existing vector store # def generate_vector_store(self, index): # """Adds a document to the vector store on Pinecone.""" # # documents = [] # for root, dirs, files in os.walk("docs"): # for file in files: # if file.endswith(".pdf"): # print("Uploading "+file.replace(".pdf","")) # documents.clear() # loader = PDFMinerLoader(os.path.join(root, file)) # documents.extend(loader.load()) # text_splitter = RecursiveCharacterTextSplitter(chunk_size=self.text_split_size, chunk_overlap=self.text_overlap) # texts = text_splitter.split_documents(documents) # docsearch = Pinecone.from_documents(texts, embedding=self.embeddings_model, index_name=index) # os.remove(os.path.join(root, file)) # # return "Ok" # # # Example Usage: if __name__ == "__main__": """This is an example of how to add document to the vectorstore on Pinecone""" from settings import SettingManager set= SettingManager() emb_manager = EmbeddingsManager(set,emb="hkunlp/instructor-large") print(emb_manager.generate_vector_store("prohelper")) #"""This is an example of how to retrive context and display all values retrived""" #emb_manager = EmbeddingsManager() #docs=emb_manager.get_context(index="prohelper",query="Could you explain to me what is esrs?") #for i in docs: # print("---------------------------------------------------------") # print(i.metadata["Doc"]) # print(" ") # print(i.page_content) #llm_manager.selectLLM("Mixtral 7B")