GianJSX's picture
Update app.py
61039b2
import chainlit as cl
from openai import OpenAI
from langsmith.run_helpers import traceable
from langsmith_config import setup_langsmith_config
import base64
import os
model = "gpt-4-1106-preview"
model_vision = "gpt-4-vision-preview"
setup_langsmith_config()
def process_images(msg: cl.Message):
# Processing images exclusively
images = [file for file in msg.elements if "image" in file.mime]
# Accessing the bytes of a specific image
image_bytes = images[0].content # take the first image just for demo purposes
# check the size of the image, max 1mb
if len(image_bytes) > 5000000:
return "too_large"
# we need base64 encoded image
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
return image_base64
async def process_stream(stream, msg: cl.Message):
for part in stream:
if token := part.choices[0].delta.content or "":
await msg.stream_token(token)
def handle_vision_call(msg, image_history):
image_base64 = None
image_base64 = process_images(msg)
if image_base64 == "too_large":
return "too_large"
if image_base64:
# add the image to the image history
image_history.append(
{
"role": "user",
"content": [
{"type": "text", "text": msg.content},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}",
"detail": "low"
}
},
],
}
)
stream = gpt_vision_call(image_history)
return stream
@traceable(run_type="llm", name="gpt 3 turbo call")
async def gpt_call(message_history: list = []):
client = OpenAI(api_key=cl.user_session.get("api_key"))
stream = client.chat.completions.create(
model=model,
messages=message_history,
stream=True,
)
return stream
@traceable(run_type="llm", name="gpt 4 turbo vision call")
def gpt_vision_call(image_history: list = []):
client = OpenAI(api_key=cl.user_session.get("api_key"))
stream = client.chat.completions.create(
model=model_vision,
messages=image_history,
max_tokens=500,
stream=True,
)
return stream
async def wait_for_key():
res = await cl.AskUserMessage(content="Send an Openai API KEY to start. [https://platform.openai.com/api-keys](https://platform.openai.com/api-keys). e.g. sk-IY8Wl.....1cXD8", timeout=600).send()
if res:
await cl.Message(content="setting up...", indent=1).send()
# check if the key is valid
client = OpenAI(api_key=res["content"])
try:
stream = client.chat.completions.create(
model=model,
messages=[{"role": "system", "content": "test"}],
max_tokens=1,
)
if stream:
await cl.Message(content="API_KEY setted, you can start chatting!", indent=1).send()
cl.user_session.set("api_key", res["content"])
except Exception as e:
await cl.Message(content=f"{e}", indent=1).send()
return await wait_for_key()
return await cl.Message(content="API_KEY setted, you can start chatting!").send()
else:
return await wait_for_key()
@cl.on_chat_start
async def start_chat():
cl.user_session.set(
"message_history",
[{"role": "system", "content": "You are a helpful assistant. You are made by GPT-3.5-turbo-1106, the latest version developed by Openai. You do not have the ability to receive images, but if the user uploads an image with the message, GPT-4-vision-preview will be used. So if a user asks you if you have the ability to analyze images, you can tell them that. And tell him that at the bottom left (above the text input) he has a button to upload images, or he can drag it to the chat, or he can just copy paste the input"}],
)
cl.user_session.set("image_history", [{"role": "system", "content": "You are a helpful assistant. You are developed with GPT-4-vision-preview, if the user uploads an image, you have the ability to understand it. For normal messages GPT-3.5-turbo-1106 will be used, and for images you will use it. If the user asks about your capabilities you can tell them that."}])
await wait_for_key()
@cl.on_message
@traceable(run_type="chain", name="message")
async def on_message(msg: cl.Message):
message_history = cl.user_session.get("message_history")
image_history = cl.user_session.get("image_history")
stream_msg = cl.Message(content="")
stream = None
if msg.elements:
stream = handle_vision_call(msg, image_history)
if stream == "too_large":
return await cl.Message(content="Image too large, max 1mb").send()
else:
# add the message in both to keep the coherence between the two histories
message_history.append({"role": "user", "content": msg.content})
image_history.append({"role": "user", "content": msg.content})
stream = await gpt_call(message_history)
if stream:
await process_stream(stream, msg=stream_msg)
message_history.append({"role": "assistant", "content": stream_msg.content})
image_history.append({"role": "assistant", "content": stream_msg.content})
return stream_msg.content