Spaces:
Sleeping
Sleeping
from torch import nn | |
from transformers import AutoConfig, AutoModel, AutoTokenizer | |
import torch | |
def weight_init_normal(module, model): | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=model.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=model.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class MeanPooling(nn.Module): | |
def __init__(self): | |
super(MeanPooling, self).__init__() | |
def forward(self, last_hidden_state, attention_mask): | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float() | |
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1) | |
sum_mask = input_mask_expanded.sum(1) | |
sum_mask = torch.clamp(sum_mask, min=1e-9) | |
mean_embeddings = sum_embeddings / sum_mask | |
return mean_embeddings | |
class MeanPoolingLayer(nn.Module): | |
def __init__(self, | |
hidden_size, | |
target_size, | |
dropout = 0, | |
): | |
super(MeanPoolingLayer, self).__init__() | |
self.pool = MeanPooling() | |
self.fc = nn.Sequential( | |
nn.Dropout(dropout), | |
nn.Linear(hidden_size, target_size), | |
nn.Sigmoid() | |
) | |
def forward(self, inputs, mask): | |
last_hidden_states = inputs[0] | |
feature = self.pool(last_hidden_states, mask) | |
outputs = self.fc(feature) | |
return outputs | |
class HSLanguageModel(nn.Module): | |
def __init__(self, | |
backbone = 'microsoft/deberta-v3-small', | |
target_size = 1, | |
head_dropout = 0, | |
reinit_nlayers = 0, | |
freeze_nlayers = 0, | |
reinit_head = True, | |
grad_checkpointing = False, | |
): | |
super(HSLanguageModel, self).__init__() | |
self.config = AutoConfig.from_pretrained(backbone, output_hidden_states=True) | |
self.model = AutoModel.from_pretrained(backbone, config=self.config) | |
self.head = MeanPoolingLayer( | |
self.config.hidden_size, | |
target_size, | |
head_dropout | |
) | |
self.tokenizer = AutoTokenizer.from_pretrained(backbone); | |
if grad_checkpointing == True: | |
print('Gradient ckpt enabled') | |
self.model.gradient_checkpointing_enable() | |
if reinit_nlayers > 0: | |
# Reinit last n encoder layers | |
# [TODO] Check if it is autoencoding model: Bert, Roberta, DistilBert, Albert, XLMRoberta, BertModel | |
for layer in self.model.encoder.layer[-reinit_nlayers:]: | |
self._init_weights(layer) | |
if freeze_nlayers > 0: | |
self.model.embeddings.requires_grad_(False) | |
self.model.encoder.layer[:freeze_nlayers].requires_grad_(False) | |
if reinit_head: | |
# Reinit layers in head | |
self._init_weights(self.head) | |
def _init_weights(self, layer): | |
for module in layer.modules(): | |
init_fn = weight_init_normal | |
init_fn(module, self) | |
def forward(self, inputs): | |
outputs = self.model(**inputs) | |
outputs = self.head(outputs, inputs['attention_mask']) | |
return outputs | |
if __name__ == '__main__': | |
model = HSLanguageModel() | |