Spaces:
Running
Running
File size: 6,107 Bytes
ba68f4f b87dbd1 ba68f4f b992ab0 ba68f4f 79c1b5f ba68f4f b87dbd1 79c1b5f ba68f4f 687b6e4 ba68f4f b87dbd1 ba68f4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 18 08:01:41 2023
@author: Shamim Ahamed, RE AIMS Lab
"""
import streamlit as st
import pandas as pd
from tqdm.cli import tqdm
import numpy as np
import requests
import pandas as pd
from tqdm import tqdm
def get_user_data(api, parameters):
response = requests.post(f"{api}", json=parameters)
if response.status_code == 200:
return response.json()
else:
print(f"ERROR: {response.status_code}")
return None
st.set_page_config(page_title="SuSastho.AI Chatbot", page_icon="🚀", layout='wide')
st.markdown("""
<style>
p {
font-size:0.8rem !important;
}
textarea {
font-size: 0.8rem !important;
padding: 0.8rem 1rem 0.75rem 0.8rem !important;
}
button {
padding: 0.65rem !important;
}
.css-1lr5yb2 {
background-color: rgb(105 197 180) !important;
}
.css-1c7y2kd {
background-color: Transparent !important;
}
.css-4oy321 {
background-color: rgba(240, 242, 246, 0.5) !important;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
""",unsafe_allow_html=True)
model_names = {
'BLOOM 7B': 'bloom-7b',
}
with st.sidebar:
st.title("SuSastho.AI - ChatBot 🚀")
model_name = model_names[st.selectbox('Model', list(model_names.keys()), 0)]
max_ctx = st.slider('Select Top N Context', min_value=1, max_value=6, value=3, step=1)
# ctx_checker_tmp = st.slider('Context Checker Sensitivity', min_value=0.001, max_value=1.0, value=0.008, step=0.001)
ctx_checker_tmp = 0.008
lm_tmp = st.slider('Language Model Sensitivity', min_value=0.001, max_value=1.0, value=0.1, step=0.001)
cls_threshold = st.slider('Classification Threshold', min_value=0.01, max_value=1.0, value=0.5, step=0.01)
verbose = st.checkbox('Show Detailed Response', value=False)
if verbose == True:
retv_cnt = st.slider('Display N retrived Doc', min_value=0, max_value=32, value=0, step=1)
show_input = st.checkbox('Show Input of LLM', value=False)
endpoint = st.secrets["LLMEndpoint"]
def main():
if model_name == 'None':
st.markdown('##### Please select a model.')
return
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [{"role": 'assistant', "content": 'হ্যালো! আমি একটি এআই অ্যাসিস্ট্যান্ট। কীভাবে সাহায্য করতে পারি? 😊'}]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("এখানে মেসেজ লিখুন"):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
## Get context
params = {
"chat_history": [{"content": x["content"], "role": x["role"]} for x in st.session_state.messages[-10:] if x['role']=='user'],
"model": "bloom-7b",
"mode": "specific",
"config": {
"ctx_checker_tmp": ctx_checker_tmp,
"lm_tmp": lm_tmp,
"max_ctx": max_ctx,
"cls_threshold": cls_threshold,
"llm_enable": True,
}
}
resp = get_user_data(endpoint, params)
if resp == None:
st.markdown('#### INTERNAL ERROR')
return
print(resp['data']['logs']['content'])
response = resp['data']['responses'][0]['content']
reasoning = resp['data']['logs']['content']['llm']['reasoning']
llm_input = resp['data']['logs']['content']['llm']['input']
context = resp['data']['logs']['content']['retrival_model']['matched_doc']
context_prob = resp['data']['logs']['content']['retrival_model']['matched_prob']
if verbose:
clen = len(context)
retrived = resp['data']['logs']['content']['retrival_model']['retrived_doc'][:retv_cnt]
retrived_prob = resp['data']['logs']['content']['retrival_model']['retrived_prob'][:retv_cnt]
retrived = [str(round(b, 3)) + ': ' + a for a, b in zip (retrived, retrived_prob)]
retrived = '\n\n===============================\n\n'.join(retrived)
context = [str(round(b, 3)) + ': ' + a for a, b in zip (context, context_prob)]
context = '\n\n===============================\n\n'.join(context)
response = f'###### Config: Context Checker Value: {ctx_checker_tmp}, LM Value: {lm_tmp}\n\n##### Retrived Context:\n{retrived}\n\n##### Response:\n{reasoning}' # ##### Matched Context:{clen}\n{context}\n\n
if show_input:
response += '\n\n### LLM Input:\n' + llm_input
# Display assistant response in chat message container
with st.chat_message("assistant", avatar=None):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
def app_viewport():
passw = st.empty()
appc = st.container()
if 'logged_in' not in st.session_state:
with passw.container():
secret = st.text_input('Please Enter Access Code')
if st.button("Submit", type='primary'):
if secret == st.secrets["login_secret"]:
passw.empty()
st.session_state['logged_in'] = True
else:
st.error('Wrong Access Code.')
if 'logged_in' in st.session_state and st.session_state['logged_in'] == True:
with appc:
main()
if __name__ == '__main__':
app_viewport()
|