Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
import os
|
6 |
+
import csv
|
7 |
+
from gradio import inputs, outputs
|
8 |
+
from datetime import datetime
|
9 |
+
import fastapi
|
10 |
+
from typing import List, Dict
|
11 |
+
import httpx
|
12 |
+
import pandas as pd
|
13 |
+
import datasets as ds
|
14 |
+
UseMemory=True
|
15 |
+
|
16 |
+
HF_TOKEN=os.environ.get("HF_TOKEN")
|
17 |
+
|
18 |
+
def SaveResult(text, outputfileName):
|
19 |
+
basedir = os.path.dirname(__file__)
|
20 |
+
savePath = outputfileName
|
21 |
+
print("Saving: " + text + " to " + savePath)
|
22 |
+
from os.path import exists
|
23 |
+
file_exists = exists(savePath)
|
24 |
+
if file_exists:
|
25 |
+
with open(outputfileName, "a") as f: #append
|
26 |
+
f.write(str(text.replace("\n"," ")))
|
27 |
+
f.write('\n')
|
28 |
+
else:
|
29 |
+
with open(outputfileName, "w") as f: #write
|
30 |
+
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
|
31 |
+
f.write(str(text.replace("\n"," ")))
|
32 |
+
f.write('\n')
|
33 |
+
return
|
34 |
+
|
35 |
+
|
36 |
+
def store_message(name: str, message: str, outputfileName: str):
|
37 |
+
basedir = os.path.dirname(__file__)
|
38 |
+
savePath = outputfileName
|
39 |
+
if name and message:
|
40 |
+
with open(savePath, "a") as csvfile:
|
41 |
+
writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
|
42 |
+
writer.writerow(
|
43 |
+
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() }
|
44 |
+
)
|
45 |
+
df = pd.read_csv(savePath)
|
46 |
+
df = df.sort_values(df.columns[0],ascending=False)
|
47 |
+
return df
|
48 |
+
|
49 |
+
mname = "facebook/blenderbot-400M-distill"
|
50 |
+
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
|
51 |
+
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
|
52 |
+
|
53 |
+
def take_last_tokens(inputs, note_history, history):
|
54 |
+
if inputs['input_ids'].shape[1] > 128:
|
55 |
+
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
|
56 |
+
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
|
57 |
+
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
|
58 |
+
history = history[1:]
|
59 |
+
return inputs, note_history, history
|
60 |
+
|
61 |
+
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay.
|
62 |
+
note_history.append(note)
|
63 |
+
note_history = '</s> <s>'.join(note_history)
|
64 |
+
return [note_history]
|
65 |
+
|
66 |
+
title = "💬ChatBack🧠💾"
|
67 |
+
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions.
|
68 |
+
Current Best SOTA Chatbot: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F """
|
69 |
+
|
70 |
+
def get_base(filename):
|
71 |
+
basedir = os.path.dirname(__file__)
|
72 |
+
loadPath = basedir + "\\" + filename
|
73 |
+
return loadPath
|
74 |
+
|
75 |
+
def chat(message, history):
|
76 |
+
history = history or []
|
77 |
+
if history:
|
78 |
+
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
|
79 |
+
else:
|
80 |
+
history_useful = []
|
81 |
+
|
82 |
+
history_useful = add_note_to_history(message, history_useful)
|
83 |
+
inputs = tokenizer(history_useful, return_tensors="pt")
|
84 |
+
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
|
85 |
+
reply_ids = model.generate(**inputs)
|
86 |
+
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
|
87 |
+
history_useful = add_note_to_history(response, history_useful)
|
88 |
+
list_history = history_useful[0].split('</s> <s>')
|
89 |
+
history.append((list_history[-2], list_history[-1]))
|
90 |
+
|
91 |
+
df=pd.DataFrame()
|
92 |
+
|
93 |
+
if UseMemory:
|
94 |
+
outputfileName = 'ChatbotMemory.csv'
|
95 |
+
df = store_message(message, response, outputfileName) # Save to dataset
|
96 |
+
basedir = get_base(outputfileName)
|
97 |
+
|
98 |
+
return history, df, basedir
|
99 |
+
|
100 |
+
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown("<h1><center>🍰Gradio chatbot backed by dataframe CSV memory🎨</center></h1>")
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
t1 = gr.Textbox(lines=1, default="", label="Chat Text:")
|
106 |
+
b1 = gr.Button("Respond and Retrieve Messages")
|
107 |
+
|
108 |
+
with gr.Row(): # inputs and buttons
|
109 |
+
s1 = gr.State([])
|
110 |
+
df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate")
|
111 |
+
with gr.Row(): # inputs and buttons
|
112 |
+
file = gr.File(label="File")
|
113 |
+
s2 = gr.Markdown()
|
114 |
+
|
115 |
+
b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file])
|
116 |
+
|
117 |
+
demo.launch(debug=True, show_error=True)
|