Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import math | |
import librosa | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, d_model, num_heads): | |
super(MultiHeadAttention, self).__init__() | |
self.d_model = d_model | |
self.num_heads = num_heads | |
self.d_k = d_model // num_heads | |
self.W_q = nn.Linear(d_model, d_model) # query | |
self.W_k = nn.Linear(d_model, d_model) # key | |
self.W_v = nn.Linear(d_model, d_model) # value | |
self.W_o = nn.Linear(d_model, d_model) # output | |
def scaled_dot_product_attention(self, Q, K, V, mask=None): | |
attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k) | |
if mask is not None: | |
attn_scores = attn_scores.masked_fill(mask == 0, -1e9) | |
attn_probs = torch.softmax(attn_scores, dim=-1) | |
output = torch.matmul(attn_probs, V) | |
return output | |
def split_heads(self, x): | |
batch_size, seq_length, d_model = x.size() | |
return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2) | |
def combine_heads(self, x): | |
batch_size, _, seq_length, d_k = x.size() | |
return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model) | |
def forward(self, Q, K, V, mask=None): | |
Q = self.split_heads(self.W_q(Q)) | |
K = self.split_heads(self.W_k(K)) | |
V = self.split_heads(self.W_v(V)) | |
attn_output = self.scaled_dot_product_attention(Q, K, V, mask) | |
output = self.W_o(self.combine_heads(attn_output)) | |
return output | |
class PositionWiseFeedForward(nn.Module): | |
def __init__(self, d_model, d_ff): | |
super(PositionWiseFeedForward, self).__init__() | |
self.fc1 = nn.Linear(d_model, d_ff) | |
self.fc2 = nn.Linear(d_ff, d_model) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
return self.fc2(self.relu(self.fc1(x))) | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, max_seq_length): | |
super(PositionalEncoding, self).__init__() | |
pe = torch.zeros(max_seq_length, d_model) | |
position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
self.register_buffer('pe', pe.unsqueeze(0)) | |
def forward(self, x): | |
self.pe = self.pe.to(x.device) | |
return x + self.pe[:, :x.size(1)] | |
class EncoderLayer(nn.Module): | |
def __init__(self, d_model, num_heads, d_ff, dropout): | |
super(EncoderLayer, self).__init__() | |
self.self_attn = MultiHeadAttention(d_model, num_heads) | |
self.feed_forward = PositionWiseFeedForward(d_model, d_ff) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x, mask): | |
attn_output = self.self_attn(x, x, x, mask) | |
x = self.norm1(x + self.dropout(attn_output)) | |
ff_output = self.feed_forward(x) | |
x = self.norm2(x + self.dropout(ff_output)) | |
return x | |
class PhantomNet(nn.Module): | |
def __init__(self, use_mode, feature_size, conv_projection, num_classes, num_heads=8, num_layers=6, d_ff=2048, dropout=0.1): | |
super(PhantomNet, self).__init__() | |
self.conv1 = nn.Conv1d(in_channels=1, out_channels=512, kernel_size=10, stride=5) | |
self.conv2 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2) | |
self.conv3 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2) | |
self.conv4 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2) | |
self.conv5 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2) | |
self.conv6 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=2, stride=2) | |
self.conv7 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=2, stride=2) | |
self.use_mode = use_mode | |
self.conv_projection = conv_projection | |
self.num_classes = num_classes | |
self.flatten = nn.Flatten() | |
self.sigmoid = nn.Sigmoid() | |
self.gelu = nn.GELU() | |
self.relu = nn.ReLU() | |
self.fcIntermidiate = nn.Linear(512, feature_size) | |
self.positional_encoding = PositionalEncoding(feature_size, 10000) | |
self.encoder_layers = nn.ModuleList( | |
[EncoderLayer(feature_size, num_heads, d_ff, dropout) for _ in range(num_layers)]) | |
self.dropout = nn.Dropout(dropout) | |
if self.conv_projection: | |
self.convProjection = nn.Conv1d(feature_size, feature_size, kernel_size=128, stride=1) | |
self.fc1 = nn.Linear(feature_size, feature_size) | |
self.fc2 = nn.Linear(feature_size, 1, bias=True) | |
if self.use_mode == 'spoof': | |
#if there is a mismatch error, you will need to replace this input size.. currently working with 8 seconds samples | |
#just multiply 95.760 * seconds the get this layer's input size | |
#or I can just add another parameter to the model seq_length and input = seq_length * feature_size | |
self.fcSpoof = nn.Linear(286080, d_ff) | |
self.fcFinal = nn.Linear(d_ff,self.num_classes) | |
else: | |
self.fcSpoof = None | |
def forward(self, src): | |
src = src.unsqueeze(1) | |
src = self.gelu(self.conv1(src)) | |
src = self.gelu(self.conv2(src)) | |
src = self.gelu(self.conv3(src)) | |
src = self.gelu(self.conv4(src)) | |
src = self.gelu(self.conv5(src)) | |
src = self.gelu(self.conv6(src)) | |
src = self.gelu(self.conv7(src)) | |
src = src.permute(0, 2, 1) | |
src = self.fcIntermidiate(src) | |
src = src.permute(0, 2, 1) | |
if self.conv_projection: | |
src = self.gelu(self.convProjection(src)) | |
src = self.dropout(src) | |
src = src.transpose(1, 2) | |
src_embedded = self.dropout(self.positional_encoding(src)) | |
enc_output = src_embedded | |
for enc_layer in self.encoder_layers: | |
enc_output = enc_layer(enc_output, None) | |
embeddings = self.fc1(enc_output) | |
flatten_embeddings = self.flatten(embeddings) | |
if self.use_mode == 'extractor': | |
return embeddings | |
elif self.use_mode == 'partialSpoof': | |
return self.fc2(embeddings) | |
elif self.use_mode == 'spoof': | |
out_fcSpoof= self.fcSpoof(flatten_embeddings) | |
output = self.fcFinal(out_fcSpoof) | |
# output = self.sigmoid(self.fcSpoof(flatten_embeddings)) | |
# print(f"Model output shape: {output.shape}") | |
return output | |
else: | |
raise ValueError('Wrong use mode of PhantomNet, please pick between extractor, partialSpoof, or spoof') | |