DavidFarrell commited on
Commit
12655d2
1 Parent(s): 52810f4

baby steps

Browse files
Files changed (4) hide show
  1. abys.jpg +0 -0
  2. app.py +28 -0
  3. download (3).jpg +0 -0
  4. export.pkl +3 -0
abys.jpg ADDED
app.py CHANGED
@@ -1,5 +1,33 @@
1
  import gradio as gr
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  def greet(name):
4
  return "Hello " + name + "!!"
5
 
 
1
  import gradio as gr
2
 
3
+
4
+ # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 1
5
+ from fastai.vision.all import *
6
+ import skimage
7
+
8
+ # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 4
9
+ learn = load_learner('export.pkl')
10
+
11
+ labels = learn.dls.vocab
12
+
13
+ def predict(img):
14
+ img = PILImage.create(img)
15
+ pred, pred_idx, probs = learn.predict(img)
16
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
17
+
18
+
19
+
20
+
21
+ # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 7
22
+ #gr.Interface(fn=predict, inputs=gr.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3), title="Pet Breed Classifier", description="A pet breed classifier trained on the Oxford Pets dataset using the fastai library (5 epochs) as a proof of concept for Gradio.", article="<p style='text-align: center'><a href='https://gameologist.com/portfolio' target='_blank'>see more of my things here</a></p>", examples=['abys.jpg', 'download (3).jpg'], enable_queue=True).launch()
23
+
24
+ #iface = gr.Interface(fn=predict, inputs=gr.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3))
25
+ #iface.launch();
26
+
27
+
28
+
29
+
30
+
31
  def greet(name):
32
  return "Hello " + name + "!!"
33
 
download (3).jpg ADDED
export.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b1f46c87b7f1257d475ecc7205bdf8f283dc55b1be48192e91c11e3babd7f6
3
+ size 103072981