import os import torch import gradio as gr import numpy as np from PIL import Image from einops import rearrange import requests import spaces from diffusers.utils import load_image from diffusers import FluxControlNetPipeline, FluxControlNetModel from gradio_imageslider import ImageSlider # Pretrained model paths base_model = 'black-forest-labs/FLUX.1-dev' controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union' # Load the ControlNet and pipeline models controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) pipe.to("cuda") # Define control modes CONTROL_MODES = { 0: "Canny", 1: "Tile", 2: "Depth", 3: "Blur", 4: "Pose", 5: "Gray (Low)", 6: "LQ" } def preprocess_image(image, target_width, target_height): image = image.resize((target_width, target_height), Image.LANCZOS) return image @spaces.GPU(duration=120) def generate_image(prompt, control_image, control_mode, controlnet_conditioning_scale, num_steps, guidance, width, height, seed, random_seed): if random_seed: seed = np.random.randint(0, 10000) # Ensure width and height are multiples of 16 width = 16 * (width // 16) height = 16 * (height // 16) # Set the seed for reproducibility torch.manual_seed(seed) # Preprocess control image control_image = preprocess_image(control_image, width, height) # Ensure control_mode is an integer control_mode_index = int(control_mode) # Generate the image with the selected control mode and other parameters with torch.no_grad(): image = pipe( prompt, control_image=control_image, control_mode=control_mode_index, # Pass control mode as an integer width=width, height=height, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=num_steps, guidance_scale=guidance ).images[0] return image # Define the Gradio interface interface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Prompt"), gr.Image(type="pil", label="Control Image"), gr.Dropdown(choices=[(i, name) for i, name in CONTROL_MODES.items()], label="Control Mode", value=0), # Correct value and format for dropdown gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="ControlNet Conditioning Scale"), gr.Slider(step=1, minimum=1, maximum=64, value=24, label="Num Steps"), gr.Slider(minimum=0.1, maximum=10, value=3.5, label="Guidance"), gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Width"), gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Height"), gr.Number(value=42, label="Seed"), gr.Checkbox(label="Random Seed") ], outputs=ImageSlider(label="Generated Image"), title="FLUX.1 Controlnet with Multiple Modes", description="Generate images using ControlNet and a text prompt with adjustable control modes." ) if __name__ == "__main__": interface.launch()