Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,9 @@ def generate(input_ids,
|
|
15 |
cfg_weight: float = 5,
|
16 |
image_token_num_per_image: int = 576,
|
17 |
patch_size: int = 16):
|
|
|
|
|
|
|
18 |
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
|
19 |
for i in range(parallel_size * 2):
|
20 |
tokens[i, :] = input_ids
|
@@ -55,32 +58,36 @@ def unpack(dec, width, height, parallel_size=1):
|
|
55 |
return visual_img
|
56 |
|
57 |
@torch.inference_mode()
|
58 |
-
@spaces.GPU #
|
59 |
def generate_image(prompt,
|
60 |
width,
|
61 |
height,
|
62 |
guidance,
|
63 |
seed):
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
|
85 |
with gr.Blocks() as demo:
|
86 |
with gr.Row():
|
|
|
15 |
cfg_weight: float = 5,
|
16 |
image_token_num_per_image: int = 576,
|
17 |
patch_size: int = 16):
|
18 |
+
# Clear CUDA cache before generating
|
19 |
+
torch.cuda.empty_cache()
|
20 |
+
|
21 |
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
|
22 |
for i in range(parallel_size * 2):
|
23 |
tokens[i, :] = input_ids
|
|
|
58 |
return visual_img
|
59 |
|
60 |
@torch.inference_mode()
|
61 |
+
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
|
62 |
def generate_image(prompt,
|
63 |
width,
|
64 |
height,
|
65 |
guidance,
|
66 |
seed):
|
67 |
+
# Clear CUDA cache and avoid tracking gradients
|
68 |
+
torch.cuda.empty_cache()
|
69 |
+
|
70 |
+
with torch.no_grad():
|
71 |
+
if seed > -1:
|
72 |
+
generator = torch.Generator('cpu').manual_seed(seed)
|
73 |
+
else:
|
74 |
+
generator = None
|
75 |
+
messages = [{'role': 'User', 'content': prompt},
|
76 |
+
{'role': 'Assistant', 'content': ''}]
|
77 |
+
text = processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
|
78 |
+
sft_format=processor.sft_format,
|
79 |
+
system_prompt='')
|
80 |
+
text = text + processor.image_start_tag
|
81 |
+
input_ids = torch.LongTensor(processor.tokenizer.encode(text))
|
82 |
+
output, patches = generate(input_ids,
|
83 |
+
width // 16 * 16,
|
84 |
+
height // 16 * 16,
|
85 |
+
cfg_weight=guidance)
|
86 |
+
images = unpack(patches,
|
87 |
+
width // 16 * 16,
|
88 |
+
height // 16 * 16)
|
89 |
|
90 |
+
return Image.fromarray(images[0]), seed, ''
|
91 |
|
92 |
with gr.Blocks() as demo:
|
93 |
with gr.Row():
|