DeeeTeeee01's picture
Upload 2 files
7cfa370
raw
history blame
1.81 kB
import streamlit as st
import transformers
import torch
# Load the model and tokenizer
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
# Define the function for sentiment analysis
@st.cache_resource
def predict_sentiment(text):
# Load the pipeline.
pipeline = transformers.pipeline("sentiment-analysis")
# Predict the sentiment.
prediction = pipeline(text)
sentiment = prediction[0]["label"]
score = prediction[0]["score"]
return sentiment, score
# Setting the page configurations
st.set_page_config(
page_title="Sentiment Analysis App",
page_icon=":smile:",
layout="wide",
initial_sidebar_state="auto",
)
# Add description and title
st.write("""
# Predict if your text is Positive, Negative or Nuetral ...
Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
""")
# Add image
image = st.image("https://medium.com/scrapehero/sentiment-analysis-using-svm-338d418e3ff1", width=400)
# Get user input
text = st.text_input("Type here:")
# Define the CSS style for the app
st.markdown(
"""
<style>
body {
background-color: #f5f5f5;
}
h1 {
color: #4e79a7;
}
</style>
""",
unsafe_allow_html=True
)
# Show sentiment output
if text:
sentiment, score = predict_sentiment(text)
if sentiment == "Positive":
st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
elif sentiment == "Negative":
st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
else:
st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")