Spaces:
Runtime error
Runtime error
import streamlit as st | |
import transformers | |
import torch | |
# Load the model and tokenizer | |
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") | |
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") | |
# Define the function for sentiment analysis | |
def predict_sentiment(text): | |
# Load the pipeline | |
pipeline = transformers.pipeline("sentiment-analysis", model = "DeeeTeeee01/mytest_trainer_roberta-base", tokenizer= "DeeeTeeee01/mytest_trainer_roberta-base") | |
# Predict the sentiment | |
prediction = pipeline(text) | |
sentiment = prediction[0]["label"] | |
score = prediction[0]["score"] | |
return sentiment, score | |
# Setting the page configurations | |
st.set_page_config( | |
page_title="Sentiment Analysis App", | |
page_icon=":smile:", | |
layout="wide", | |
initial_sidebar_state="auto", | |
) | |
# Add description and title | |
st.write(""" | |
# Twit Analyzer | |
Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment! | |
""") | |
# Add image | |
image = st.image("sentiment.jpeg", width=400) | |
# Get user input | |
text = st.text_input("Type here:") | |
# Add Predict button | |
predict_button = st.button("Predict") | |
# Define the CSS style for the app | |
st.markdown( | |
""" | |
<style> | |
body { | |
background: linear-gradient(to right, #4e79a7, #86a8e7); | |
color: lightblue; | |
} | |
h1 { | |
color: #4e79a7; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Show sentiment output | |
if predict_button and text: | |
sentiment, score = predict_sentiment(text) | |
if sentiment == "Positive": | |
st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
elif sentiment == "Negative": | |
st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
else: | |
st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
# import streamlit as st | |
# import transformers | |
# import torch | |
# # Load the model and tokenizer | |
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") | |
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") | |
# # Define the function for sentiment analysis | |
# @st.cache_resource | |
# def predict_sentiment(text): | |
# # Load the pipeline. | |
# pipeline = transformers.pipeline("sentiment-analysis") | |
# # Predict the sentiment. | |
# prediction = pipeline(text) | |
# sentiment = prediction[0]["label"] | |
# score = prediction[0]["score"] | |
# return sentiment, score | |
# # Setting the page configurations | |
# st.set_page_config( | |
# page_title="Sentiment Analysis App", | |
# page_icon=":smile:", | |
# layout="wide", | |
# initial_sidebar_state="auto", | |
# ) | |
# # Add description and title | |
# st.write(""" | |
# # Predict if your text is Positive, Negative or Nuetral ... | |
# Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment! | |
# """) | |
# # Add image | |
# image = st.image("sentiment.jpeg", width=400) | |
# # Get user input | |
# text = st.text_input("Type here:") | |
# # Define the CSS style for the app | |
# st.markdown( | |
# """ | |
# <style> | |
# body { | |
# background-color: #f5f5f5; | |
# } | |
# h1 { | |
# color: #4e79a7; | |
# } | |
# </style> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# # Show sentiment output | |
# if text: | |
# sentiment, score = predict_sentiment(text) | |
# if sentiment == "Positive": | |
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
# elif sentiment == "Negative": | |
# st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
# else: | |
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |