import streamlit as st import transformers import torch # Load the model and tokenizer model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") # Define the function for sentiment analysis @st.cache_resource def predict_sentiment(text): # Load the pipeline pipeline = transformers.pipeline("sentiment-analysis", model = "DeeeTeeee01/mytest_trainer_roberta-base", tokenizer= "DeeeTeeee01/mytest_trainer_roberta-base") # Predict the sentiment prediction = pipeline(text) sentiment = prediction[0]["label"] score = prediction[0]["score"] return sentiment, score # Setting the page configurations st.set_page_config( page_title="Sentiment Analysis App", page_icon=":smile:", layout="wide", initial_sidebar_state="auto", ) # Add description and title st.write(""" # Twit Analyzer Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment! """) # Add image image = st.image("sentiment.jpeg", width=400) # Get user input text = st.text_input("Type here:") # Add Predict button predict_button = st.button("Predict") # Define the CSS style for the app st.markdown( """ """, unsafe_allow_html=True ) # Show sentiment output if predict_button and text: sentiment, score = predict_sentiment(text) if sentiment == "Positive": st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") elif sentiment == "Negative": st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") else: st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") # import streamlit as st # import transformers # import torch # # Load the model and tokenizer # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") # # Define the function for sentiment analysis # @st.cache_resource # def predict_sentiment(text): # # Load the pipeline. # pipeline = transformers.pipeline("sentiment-analysis") # # Predict the sentiment. # prediction = pipeline(text) # sentiment = prediction[0]["label"] # score = prediction[0]["score"] # return sentiment, score # # Setting the page configurations # st.set_page_config( # page_title="Sentiment Analysis App", # page_icon=":smile:", # layout="wide", # initial_sidebar_state="auto", # ) # # Add description and title # st.write(""" # # Predict if your text is Positive, Negative or Nuetral ... # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment! # """) # # Add image # image = st.image("sentiment.jpeg", width=400) # # Get user input # text = st.text_input("Type here:") # # Define the CSS style for the app # st.markdown( # """ # # """, # unsafe_allow_html=True # ) # # Show sentiment output # if text: # sentiment, score = predict_sentiment(text) # if sentiment == "Positive": # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") # elif sentiment == "Negative": # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") # else: # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")