from tensorflow import keras import gradio as gr model = keras.models.load_model('potato.h5') class_names = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy'] def predict_input_image(img): img_4d=img.reshape(-1,224,224,3) prediction=model.predict(img_4d)[0] return {class_names[i]: float(prediction[i]) for i in range(len(class_names))} image = gr.inputs.Image(shape=(224,224)) label = gr.outputs.Label(num_top_classes=1) gr.Interface(fn=predict_input_image, inputs=image, outputs=label,interpretation='default').launch(debug='True')