Spaces:
Runtime error
Runtime error
File size: 4,971 Bytes
c42e723 75b374d c42e723 75b374d c42e723 75b374d c42e723 75b374d c42e723 75b374d c42e723 75b374d c42e723 02ec47f 75b374d 02ec47f c42e723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
import http
import ssl
import json
import warnings
warnings.filterwarnings("ignore")
def retrieve_api_key(url):
context = ssl.create_default_context()
context.check_hostname = True
conn = http.client.HTTPSConnection(url, context=context)
conn.request("GET", "/admin/api-keys/")
api_key_response = conn.getresponse()
api_keys_data = (
api_key_response.read().decode("utf-8").replace("\n", "").replace("\t", "")
)
api_keys_json = json.loads(api_keys_data)
api_key = api_keys_json[0]["api_key"]
conn.close()
return api_key
def get_benchmark_uids(num_miner,mode):
url="test.neuralinternet.ai"
api_key = retrieve_api_key(url)
context = ssl.create_default_context()
context.check_hostname = True
conn = http.client.HTTPSConnection(url, context=context)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
"Endpoint-Version": "2023-05-19",
}
conn.request("GET", f"/top_miner_uids?n={num_miner}&mode={mode}", headers=headers)
miner_response = conn.getresponse()
miner_data = (
miner_response.read().decode("utf-8").replace("\n", "").replace("\t", "")
)
uids = json.loads(miner_data)
return uids
def retrieve_response(payload):
url="d509-65-108-32-175.ngrok-free.app"
api_key = retrieve_api_key(url)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
"Endpoint-Version": "2023-05-19",
}
payload = json.dumps(payload)
context = ssl.create_default_context()
context.check_hostname = True
conn = http.client.HTTPSConnection(url, context=context)
conn.request("POST", "/chat", payload, headers)
init_response = conn.getresponse()
init_data = init_response.read().decode("utf-8").replace("\n", "").replace("\t", "")
init_json = json.loads(init_data)
response_dict = dict()
for choice in init_json['choices']:
uid = choice['uid']
resp = choice['message']['content']
resp = resp.replace("\n", "").replace("\t", "")
response_dict[uid] = resp
response_text = '\n\n'.join([f'"{key}": "{value}"' for key, value in response_dict.items()])
return response_text
def interface_fn(system_prompt, optn, arg, user_prompt):
if len(system_prompt) == 0:
system_prompt = "You are an AI Assistant, created by bittensor and powered by NI(Neural Internet). Your task is to provide consise response to user's prompt"
messages = [{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}]
payload = dict()
if optn == 'TOP':
if int(arg) > 50:
arg = 50
payload['top_n'] = int(arg)
payload['messages'] = messages
response = retrieve_response(payload)
return response
elif optn == 'BENCHMARK_TextEval':
if int(arg) > 50:
arg = 50
uids = get_benchmark_uids(int(arg), 'TextEval')
payload['uids'] = uids
payload['messages'] = messages
response = retrieve_response(payload)
return response
elif optn == 'BENCHMARK_AGIEval':
if int(arg) > 50:
arg = 50
uids = get_benchmark_uids(int(arg), 'AGIEval')
payload['uids'] = uids
payload['messages'] = messages
response = retrieve_response(payload)
return response
else:
uids = list()
if ',' in arg:
uids = [int(x) for x in arg.split(',')]
else:
uids = [arg]
payload['uids'] = uids
payload['messages'] = messages
response = retrieve_response(payload)
return response
interface = gr.Interface(
fn=interface_fn,
inputs=[
gr.inputs.Textbox(label="System Prompt", optional=True),
gr.inputs.Dropdown(["TOP", "BENCHMARK_TextEval", "BENCHMARK_AGIEval", "UIDs"], label="Select Function"),
gr.inputs.Textbox(label="Arguement"),
gr.inputs.Textbox(label="Enter your question")
],
outputs=gr.outputs.Textbox(label="Model Responses"),
title="Explore Bittensor Miners",
description="Enter parameters as per you want and get response",
examples=[["Your task is to provide consise response of user prompts", "TOP", 5, 'What is Bittensor?']
,["Your task is to provide accurate, lengthy response with good lexical flow", "BENCHMARK_TextEval", 5, "What is neural network and how its feeding mechanism works?"],
["Act like you're in the technology field for 10+ year and give unbiased opinion", "UIDs", '975,517,906,743,869' , "What are the potential ethical concerns surrounding artificial intelligence and machine learning in healthcare?"]])
interface.launch(enable_queue=True) |