Spaces:
Runtime error
Runtime error
File size: 14,315 Bytes
11e3570 324d5c7 11e3570 ab921ed 11e3570 82d91ef 324d5c7 82d91ef 11e3570 82d91ef 11e3570 82d91ef 11e3570 82d91ef 11e3570 82d91ef 11e3570 82d91ef 11e3570 324d5c7 11e3570 53493f3 70139ef 53493f3 11e3570 15bca16 11e3570 324d5c7 11e3570 53493f3 11e3570 324d5c7 11e3570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
from ultralytics import YOLO
import supervision as sv
import cv2
import gradio as gr
import os
import numpy as np
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
import requests
from PIL import Image
import glob
import pandas as pd
import time
from pdf2image import convert_from_path
import pymupdf
import camelot
import numpy as np
import fitz
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True).to(device).eval()
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
onnx_model = YOLO("models/best.onnx", task='detect')
onnx_model_table = YOLO("models/tables/best.onnx", task='detect')
def filter_detections(detections, target_class_name="mark"):
indices_to_keep = [i for i, class_name in enumerate(detections.data['class_name']) if
class_name == target_class_name]
filtered_xyxy = detections.xyxy[indices_to_keep]
filtered_confidence = detections.confidence[indices_to_keep]
filtered_class_id = detections.class_id[indices_to_keep]
filtered_class_name = detections.data['class_name'][indices_to_keep]
detections.xyxy = filtered_xyxy
detections.confidence = filtered_confidence
detections.class_id = filtered_class_id
detections.data['class_name'] = filtered_class_name
return detections
def add_label_detection(detections):
updated_class = [f"{class_name} {i + 1}" for i, class_name in enumerate(detections.data['class_name'])]
updated_id = [class_id + i for i, class_id in enumerate(detections.class_id)]
detections.data['class_name'] = np.array(updated_class)
detections.class_id = np.array(updated_id)
return detections
def ends_with_number(s):
return s[-1].isdigit()
def ocr(image, prompt="<OCR>"):
original_height, original_width = image.shape[:2]
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=prompt,
# image_size=(image.width, image.height)
image_size=(original_width, original_height)
)
return parsed_answer
def parse_detection(detections):
parsed_rows = []
for i in range(len(detections.xyxy)):
x_min = float(detections.xyxy[i][0])
y_min = float(detections.xyxy[i][1])
x_max = float(detections.xyxy[i][2])
y_max = float(detections.xyxy[i][3])
width = int(x_max - x_min)
height = int(y_max - y_min)
row = {
"top": int(y_min),
"left": int(x_min),
"width": width,
"height": height,
"class_id": ""
if detections.class_id is None
else int(detections.class_id[i]),
"confidence": ""
if detections.confidence is None
else float(detections.confidence[i]),
"tracker_id": ""
if detections.tracker_id is None
else int(detections.tracker_id[i]),
}
if hasattr(detections, "data"):
for key, value in detections.data.items():
row[key] = (
str(value[i])
if hasattr(value, "__getitem__") and value.ndim != 0
else str(value)
)
parsed_rows.append(row)
return parsed_rows
def cut_and_save_image(image, parsed_detections, output_dir):
output_path_list = []
for i, det in enumerate(parsed_detections):
# Check if the class is 'mark'
if det['class_name'] == 'mark':
top = det['top']
left = det['left']
width = det['width']
height = det['height']
# Cut the image
cut_image = image[top:top + height, left:left + width]
# Save the image
output_path = f"{output_dir}/cut_image_{i}.png"
scaled_image = sv.scale_image(image=cut_image, scale_factor=4)
cv2.imwrite(output_path, scaled_image, [int(cv2.IMWRITE_JPEG_QUALITY), 500])
output_path_list.append(output_path)
return output_path_list
def analysis(progress=gr.Progress()):
progress(0, desc="Analyzing...")
list_files = glob.glob("output/*.png")
prompt = "<OCR>"
results = {}
for filepath in progress.tqdm(list_files):
basename = os.path.basename(filepath)
image = cv2.imread(filepath)
start_time = time.time()
parsed_answer = ocr(image, prompt)
if not ends_with_number(parsed_answer[prompt]):
parsed_answer[prompt] += "1"
results[parsed_answer[prompt]] = results.get(parsed_answer[prompt], 0) + 1
print(basename, parsed_answer[prompt])
print("Time taken:", time.time() - start_time)
return pd.DataFrame(results.items(), columns=['Mark', 'Total']).reset_index(drop=False).rename(columns={'index': 'No.'})
def inference(
image_path,
conf_threshold,
iou_threshold,
):
"""
YOLOv8 inference function
Args:
image_path: Path to the image
conf_threshold: Confidence threshold
iou_threshold: IoU threshold
Returns:
Rendered image
"""
image = cv2.imread(image_path)
original_height, original_width = image.shape[:2]
print(image.shape)
results = onnx_model(image, conf=conf_threshold, iou=iou_threshold)[0]
detections = sv.Detections.from_ultralytics(results)
detections = filter_detections(detections)
parsed_detections = parse_detection(detections)
output_dir = "output"
# Check if the output directory exists, clear all the files inside
if not os.path.exists(output_dir):
os.makedirs(output_dir)
else:
for f in os.listdir(output_dir):
os.remove(os.path.join(output_dir, f))
output_path_list = cut_and_save_image(image, parsed_detections, output_dir)
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator(text_position=sv.Position.TOP_LEFT, text_thickness=1, text_padding=2)
annotated_image = image.copy()
annotated_image = box_annotator.annotate(
scene=annotated_image,
detections=detections
)
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
return annotated_image, output_path_list
def read_table(sheet):
excel_path = "output_tables.xlsx"
if os.path.exists(excel_path):
sheetnames = pd.ExcelFile(excel_path).sheet_names
if sheet in sheetnames:
df = pd.read_excel(excel_path, sheet_name=sheet)
else:
df = pd.DataFrame()
else:
df = pd.DataFrame()
return df
def validate_df(df):
columns = []
count = 1
for col in df.columns:
if type(col) == int:
columns.append(f"Col {count}")
count += 1
else:
columns.append(col)
df.columns = columns
return df
def analyze_table(file, conf_threshold, iou_threshold, progress=gr.Progress()):
progress(0, desc="Parsing table...")
img = convert_from_path(file)[0]
doc = pymupdf.open(file)
zoom_x = 1.0 # horizontal zoom
zoom_y = 1.0 # vertical zoom
mat = pymupdf.Matrix(zoom_x, zoom_y)
for i, page in enumerate(doc):
pix = page.get_pixmap(matrix=mat)
pix.save("temp.png")
image = cv2.imread("temp.png")
file_height, file_width, _ = image.shape
results = onnx_model_table(image, conf=conf_threshold, iou=iou_threshold, imgsz=640)[0]
detections = sv.Detections.from_ultralytics(results)
detections = add_label_detection(detections)
parsed_detections = parse_detection(detections)
# print(parsed_detections)
output_dir = "output_table"
# Check if the output directory exists, clear all the files inside
if not os.path.exists(output_dir):
os.makedirs(output_dir)
else:
for f in os.listdir(output_dir):
os.remove(os.path.join(output_dir, f))
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator(text_position=sv.Position.TOP_LEFT, text_thickness=1, text_padding=2)
annotated_image = image.copy()
annotated_image = box_annotator.annotate(
scene=annotated_image,
detections=detections
)
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
pdf = fitz.open(file)
pdf_page = pdf[0]
table_area = [(ind,
fitz.Rect(det['left'], det['top'], det['left'] + det['width'], det['top'] + det['height']))
for ind, det in enumerate(parsed_detections)
]
table_list = []
for ind, area in progress.tqdm(table_area):
pdf_tabs = pdf_page.find_tables(clip=area)
if len(pdf_tabs.tables) > 0:
pdf_df = pdf_tabs[0].to_pandas()
print("Fitz Table Found!")
else:
cur = parsed_detections[ind]
table_areas = [f"{cur['left']},{file_height - cur['top']},{cur['left'] + cur['width']},{file_height - (cur['top'] + cur['height'])}"]
tables = camelot.read_pdf(file, pages='0', flavor='stream', row_tol=10, table_areas=table_areas)
pdf_df = tables[0].df
print("Camelot Table Found!")
pdf_df = validate_df(pdf_df)
table_list.append(pdf_df)
excel_path = "output_tables.xlsx"
sheet_list = []
with pd.ExcelWriter(excel_path, engine='xlsxwriter') as writer:
for i in range(len(table_list)):
sheet_name = f"Table_{i + 1}"
table_list[i].to_excel(writer, sheet_name=sheet_name, index=False)
sheet_list.append(sheet_name)
return img, annotated_image, excel_path, ", ".join(sheet_list)
TITLE = "<h1 style='font-size: 2.5em; text-align: center;'>Identify objects in construction design</h1>"
DESCRIPTION = """<p style='font-size: 1.5em; line-height: 1.6em; text-align: left;'>Welcome to the object
identification application. This tool allows you to upload an image, and it will identify and annotate objects within
the image. Additionally, you can perform OCR analysis on the detected objects.</p>
"""
CSS = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
h1 {
text-align: center;
}
"""
EXAMPLES = [
['examples/train1.png', 0.6, 0.25],
['examples/train2.png', 0.9, 0.25],
['examples/train3.png', 0.6, 0.25]
]
SHEET_LIST = ['Table_1', 'Table_2', 'Table_3', 'Table_4', 'Table_5', 'Table_6']
with gr.Blocks(theme=gr.themes.Soft(), css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
with gr.Tab(label="Identify objects"):
with gr.Row(equal_height=False):
input_img = gr.Image(type="filepath", label="Upload Image")
output_img = gr.Image(type="filepath", label="Output Image")
with gr.Row():
with gr.Column():
conf_thres = gr.Slider(minimum=0.0, maximum=1.0, value=0.6, step=0.05, label="Confidence Threshold")
with gr.Column():
iou = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="IOU Threshold")
with gr.Row():
with gr.Column():
submit_btn = gr.Button(value="Predict")
with gr.Column():
analysis_btn = gr.Button(value="Analysis")
with gr.Row():
output_df = gr.Dataframe(label="Results")
with gr.Row():
with gr.Accordion("Gallery", open=False):
gallery = gr.Gallery(label="Detected Mark Object", columns=3)
submit_btn.click(inference, [input_img, conf_thres, iou], [output_img, gallery])
analysis_btn.click(analysis, [], [output_df])
examples = gr.Examples(
EXAMPLES,
fn=inference,
inputs=[input_img, conf_thres, iou],
outputs=[output_img, gallery],
cache_examples=False,
)
with gr.Tab(label="Detect and read table"):
with gr.Row():
with gr.Column():
upload_pdf = gr.Image(label="Upload PDF file")
upload_button = gr.UploadButton(label="Upload PDF file", file_types=[".pdf"])
with gr.Column():
output_img = gr.Image(label="Output Image", interactive=False)
with gr.Row():
with gr.Column():
conf_thres_table = gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05,
label="Confidence Threshold")
with gr.Column():
iou_table = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="IOU Threshold")
with gr.Row():
with gr.Column():
text_output = gr.Textbox(label="Table List")
with gr.Column():
file_output = gr.File()
with gr.Row():
sheet_name = gr.Dropdown(choices=SHEET_LIST, allow_custom_value=True, label="Sheet Name")
with gr.Row():
output_df = gr.Dataframe(label="Results")
upload_button.upload(analyze_table, [upload_button, conf_thres_table, iou_table],
[upload_pdf, output_img, file_output, text_output])
conf_thres_table.change(analyze_table, [upload_button, conf_thres_table, iou_table],
[upload_pdf, output_img, file_output, text_output])
iou_table.change(analyze_table, [upload_button, conf_thres_table, iou_table],
[upload_pdf, output_img, file_output, text_output])
sheet_name.change(read_table, sheet_name, output_df)
demo.launch(debug=True) |