Spaces:
Sleeping
Sleeping
# to create nueral network | |
import torch | |
# for interface | |
import gradio as gr | |
# to open images | |
from PIL import Image | |
# used for audio | |
import scipy.io.wavfile as wavfile | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") | |
# Load the pretrained weights | |
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) | |
# Define the function to generate audio from text | |
def generate_audio(text): | |
# Generate the narrated text | |
narrated_text = narrator(text) | |
# Save the audio to WAV file | |
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], | |
data=narrated_text["audio"][0]) | |
# Return the path to the saved output WAV file | |
return "output.wav" # return audio | |
def caption_my_image(pil_image): | |
semantics = caption_image(images=pil_image)[0]['generated_text'] | |
audio = generate_audio(semantics) | |
return semantics,audio # returns both text and audio output | |
gr.close_all() | |
demo = gr.Interface(fn=caption_my_image, | |
inputs=[gr.Image(label="Select Image",type="pil")], | |
outputs=[ | |
gr.Textbox(label="Image Caption"), | |
gr.Audio(label="Image Caption Audio")], | |
title="IMAGE CAPTIONING WITH AUDIO OUTPUT", | |
description="THIS APPLICATION WILL BE USED TO CAPTION IMAGES WITH THE HELP OF AI") | |
demo.launch() |