# to create nueral network import torch # for interface import gradio as gr # to open images from PIL import Image # used for audio import scipy.io.wavfile as wavfile # Use a pipeline as a high-level helper from transformers import pipeline device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") # Load the pretrained weights caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) # Define the function to generate audio from text def generate_audio(text): # Generate the narrated text narrated_text = narrator(text) # Save the audio to WAV file wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) # Return the path to the saved output WAV file return "output.wav" # return audio def caption_my_image(pil_image): semantics = caption_image(images=pil_image)[0]['generated_text'] audio = generate_audio(semantics) return semantics,audio # returns both text and audio output gr.close_all() demo = gr.Interface(fn=caption_my_image, inputs=[gr.Image(label="Select Image",type="pil")], outputs=[ gr.Textbox(label="Image Caption"), gr.Audio(label="Image Caption Audio")], title="IMAGE CAPTIONING WITH AUDIO OUTPUT", description="THIS APPLICATION WILL BE USED TO CAPTION IMAGES WITH THE HELP OF AI") demo.launch()