import gradio as gr from gnews import GNews import pandas as pd from transformers import pipeline from datetime import datetime, timedelta import matplotlib.pyplot as plt import tensorflow as tf # def discard_old_rows(df): # # Convert the 'published date' column to datetime # df['published date'] = pd.to_datetime(df['published date'], format='%a, %d %b %Y %H:%M:%S %Z') # # Get the current date # current_date = datetime.utcnow() # # Calculate the date two months ago # two_months_ago = current_date - timedelta(days=60) # # Filter the DataFrame to keep only the rows with 'published date' within the last two months # df_filtered = df[df['published date'] >= two_months_ago] # return df_filtered def extract_and_clean_titles(df): # Initialize an empty list to store the cleaned titles values_list = [] if(df.empty): return values_list # Iterate over each value in the 'title' column of the DataFrame for value in df['title']: # Find the position of the first hyphen in the title index = value.find('-') # Extract the part of the title before the hyphen # If there's no hyphen, use the entire title extracted_value = value[:index] if index >= 0 else value # Remove any occurrences of '...' from the extracted value cleaned_value = extracted_value.replace('...', '') # Append the cleaned value to the list values_list.append(cleaned_value) # Return the list of cleaned titles return values_list def analyze_sentiments(values_list, sentiment_analysis): # Initialize an empty list to store the sentiment predictions prediction = [] # Iterate over each news title in the values_list for news in values_list: # Perform sentiment analysis on the current news title sentiment = sentiment_analysis(news) # Append the resulting sentiment to the prediction list prediction.append(sentiment) # Return the list of sentiment predictions return prediction def calculate_weighted_average(predictions): # Initialize the weighted average score to zero weighted_avg = 0 # Iterate over each prediction in the predictions list for i in predictions: # Check if the label of the first sentiment prediction is 'positive' if i[0]['label'] == 'positive': # Add the score to the weighted average (positive sentiment) weighted_avg += 1 * i[0]['score'] # Check if the label of the first sentiment prediction is 'negative' elif i[0]['label'] == 'negative': # Subtract the score from the weighted average (negative sentiment) weighted_avg += -1 * i[0]['score'] # Calculate the weighted average by dividing by the number of predictions weighted_avg /= len(predictions) # Return the calculated weighted average return weighted_avg def sentiment_pie_chart(predictions, stock ,output_path='sentiment_pie_chart.png'): """ Generates a pie chart for sentiment distribution. """ positive_count = 0 negative_count = 0 neutral_count = 0 for item in predictions: label = item[0]['label'] if label == 'positive': positive_count += 1 elif label == 'negative': negative_count += 1 elif label == 'neutral': neutral_count += 1 labels = ['Positive', 'Negative', 'Neutral'] sizes = [positive_count, negative_count, neutral_count] colors = ['#66BB6A', '#EF5350', '#42A5F5'] fig, ax = plt.subplots() ax.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90, pctdistance=0.85) center_circle = plt.Circle((0, 0), 0.70, fc='white') fig.gca().add_artist(center_circle) ax.axis('equal') plt.title('Sentiment Analysis Results for ' + stock + ' Stock') # Save the plot as an image file plt.savefig(output_path) plt.close(fig) return output_path def main(stock): #Specifying model model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis" #Scraping top data from google news google_news = GNews(max_results=50, period='30d') Company_news=google_news.get_news(stock + "stock") df=pd.DataFrame(Company_news) print(df) #Discarding old rows # df=discard_old_rows(df) if(df.empty): return "Not enough data, please increase timeframe", None #Cleaning the titles for sentiment analysis values_list=extract_and_clean_titles(df) #Sentiment Analysis sentiment_analysis = pipeline(model=model) #Predictions predictions=analyze_sentiments(values_list,sentiment_analysis) #Weighted Average weighted_avg=calculate_weighted_average(predictions) #Pie-Chart pie_chart_path = sentiment_pie_chart(predictions, stock) if(weighted_avg>=-0.10 and weighted_avg<=0.10): return f'{weighted_avg:.2f} (Stagnant)', pie_chart_path elif(weighted_avg>0.1): return f'{weighted_avg:.2f} (Positive)', pie_chart_path else: return f'{weighted_avg:.2f} (Negative)', pie_chart_path iface = gr.Interface( fn=main, inputs=["textbox"], outputs=["textbox","image"] ) if __name__ == "__main__": iface.launch()