File size: 6,699 Bytes
2d07fab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import math

import torch

from torch import nn


# adapted from https://pytorch.org/tutorials/beginner/transformer_tutorial.html
class PositionEmbedding1D(nn.Module):
    def __init__(self, embedding_dim, dropout=0.1, max_len=128):
        super().__init__()

        # self.dropout = nn.Dropout(p=dropout)

        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, embedding_dim, 2) * (-math.log(10000.0) / embedding_dim))
        pe = torch.zeros(max_len, embedding_dim)
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)  # .transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        # # x: Tensor, shape [batch_size, seq_len, embedding_dim]
        # x = x + self.pe[:, :x.size(1)]
        # return self.dropout(x)
        N, T, _ = x.size()
        return self.pe[:, :T].repeat(N, 1, 1)


class LearnedPositionEmbedding1D(nn.Module):
    def __init__(self, embedding_dim, max_len=128):
        super().__init__()
        self.pe = nn.Parameter(torch.Tensor(1, max_len, embedding_dim))
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_normal_(self.pe)

    def forward(self, x):
        N, T, _ = x.size()
        return self.pe[:, :T].repeat(N, 1, 1)


# https://huggingface.co/transformers/_modules/transformers/models/detr/modeling_detr.html
class PositionEmbedding2D(nn.Module):
    def __init__(self, embedding_dim, temperature=10000, normalize=False,
                 scale=None):
        super().__init__()
        assert embedding_dim % 2 == 0
        self.half_embedding_dim = embedding_dim // 2
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, pixel_values, pixel_mask):
        assert pixel_mask is not None, "No pixel mask provided"
        if pixel_mask.dim() == 4 and pixel_mask.size(1) == 1:
            pixel_mask = pixel_mask.squeeze(1)
        y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
        x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
        if self.normalize:
            y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale

        dim_t = torch.arange(self.half_embedding_dim, dtype=torch.float32, device=pixel_values.device)
        dim_t = self.temperature ** (2 * torch.divide(dim_t, 2, rounding_mode='floor') / self.half_embedding_dim)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((
            pos_x[:, :, :, 0::2].sin(),
            pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((
            pos_y[:, :, :, 0::2].sin(),
            pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos


# https://huggingface.co/transformers/_modules/transformers/models/detr/modeling_detr.html
class LearnedPositionEmbedding2D(nn.Module):
    def __init__(self, embedding_dim):
        super().__init__()
        assert embedding_dim % 2 == 0, 'embedding dimensionality must be even'
        self.rows_embeddings = nn.Embedding(50, embedding_dim//2)
        self.cols_embeddings = nn.Embedding(50, embedding_dim//2)

    def forward(self, pixel_values, pixel_mask=None):
        h, w = pixel_values.shape[-2:]
        i = torch.arange(w, device=pixel_values.device)
        j = torch.arange(h, device=pixel_values.device)
        x_emb = self.cols_embeddings(i)
        y_emb = self.rows_embeddings(j)
        pos = torch.cat([x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1)], dim=-1)
        pos = pos.permute(2, 0, 1)
        pos = pos.unsqueeze(0)
        pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
        return pos


class Box8PositionEmbedding2D(nn.Module):
    def __init__(self, embedding_dim, with_projection=True):
        super().__init__()

        self.proj = None
        if with_projection:
            self.proj = nn.Linear(8, embedding_dim)
            nn.init.xavier_normal_(self.proj.weight)
            nn.init.zeros_(self.proj.bias)

    def forward(self, fmap, fmap_mask=None):
        N, _, H, W = fmap.size()

        y1, x1 = torch.meshgrid(
            torch.arange(H, device=fmap.device, dtype=torch.float)/H,
            torch.arange(W, device=fmap.device, dtype=torch.float)/W
        )
        y2, x2 = x1+1.0/W, y1+1.0/H
        ww, hh = x2-x1, y2-y1
        # x1, y1 = 2*x1-1, 2*y1-1
        # x2, y2 = 2*x2-1, 2*y2-1
        xc, yc = x1+0.5/W, y1+0.5/H

        pos = torch.stack([x1, y1, x2, y2, xc, yc, ww, hh], dim=-1)
        if self.proj is not None:
            pos = self.proj(pos)
        pos = pos.permute(2, 0, 1)
        pos = pos.unsqueeze(0).repeat(N, 1, 1, 1)
        return pos

    def encode_boxes(self, boxes):
        x1, y1, x2, y2 = boxes.unbind(-1)
        ww, hh = x2-x1, y2-y1
        xc, yc = x1+0.5*ww, y1+0.5*hh
        pos = torch.stack([x1, y1, x2, y2, xc, yc, ww, hh], dim=-1)
        if self.proj is not None:
            pos = self.proj(pos)
        return pos


class RelativePositionEmbedding2D(nn.Module):
    def __init__(self, embedding_dim, spatial_bins=(16, 16), with_projection=True):
        super().__init__()

        assert isinstance(spatial_bins, (list, tuple)) and len(spatial_bins) == 2
        self.spatial_bins = spatial_bins

        self.proj = None
        if with_projection:
            self.proj = nn.Linear(2*spatial_bins[0]*spatial_bins[1], embedding_dim)
            nn.init.xavier_normal_(self.proj.weight)
            nn.init.zeros_(self.proj.bias)

    def forward(self, fmap, fmap_mask=None):
        N, _, H, W = fmap.size()

        BH, BW = self.spatial_bins
        yc, xc = torch.meshgrid(
            0.5/BH + torch.arange(BH, device=fmap.device, dtype=torch.float)/BH,
            0.5/BW + torch.arange(BW, device=fmap.device, dtype=torch.float)/BW
        )

        pos = torch.stack([xc, yc], dim=-1).view(-1, 1, 2)
        pos = (pos - pos.transpose(0, 1)).reshape(BH, BW, -1)  # relative positions

        if self.proj is not None:
            pos = self.proj(pos)

        pos = pos.permute(2, 0, 1)
        pos = pos.unsqueeze(0)

        if H != BH or W != BW:
            pos = nn.functional.interpolate(pos, (H, W), mode='nearest')

        pos = pos.repeat(N, 1, 1, 1)

        return pos