File size: 6,699 Bytes
2d07fab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import math
import torch
from torch import nn
# adapted from https://pytorch.org/tutorials/beginner/transformer_tutorial.html
class PositionEmbedding1D(nn.Module):
def __init__(self, embedding_dim, dropout=0.1, max_len=128):
super().__init__()
# self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embedding_dim, 2) * (-math.log(10000.0) / embedding_dim))
pe = torch.zeros(max_len, embedding_dim)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0) # .transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
# # x: Tensor, shape [batch_size, seq_len, embedding_dim]
# x = x + self.pe[:, :x.size(1)]
# return self.dropout(x)
N, T, _ = x.size()
return self.pe[:, :T].repeat(N, 1, 1)
class LearnedPositionEmbedding1D(nn.Module):
def __init__(self, embedding_dim, max_len=128):
super().__init__()
self.pe = nn.Parameter(torch.Tensor(1, max_len, embedding_dim))
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_normal_(self.pe)
def forward(self, x):
N, T, _ = x.size()
return self.pe[:, :T].repeat(N, 1, 1)
# https://huggingface.co/transformers/_modules/transformers/models/detr/modeling_detr.html
class PositionEmbedding2D(nn.Module):
def __init__(self, embedding_dim, temperature=10000, normalize=False,
scale=None):
super().__init__()
assert embedding_dim % 2 == 0
self.half_embedding_dim = embedding_dim // 2
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, pixel_values, pixel_mask):
assert pixel_mask is not None, "No pixel mask provided"
if pixel_mask.dim() == 4 and pixel_mask.size(1) == 1:
pixel_mask = pixel_mask.squeeze(1)
y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale
dim_t = torch.arange(self.half_embedding_dim, dtype=torch.float32, device=pixel_values.device)
dim_t = self.temperature ** (2 * torch.divide(dim_t, 2, rounding_mode='floor') / self.half_embedding_dim)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((
pos_x[:, :, :, 0::2].sin(),
pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((
pos_y[:, :, :, 0::2].sin(),
pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
# https://huggingface.co/transformers/_modules/transformers/models/detr/modeling_detr.html
class LearnedPositionEmbedding2D(nn.Module):
def __init__(self, embedding_dim):
super().__init__()
assert embedding_dim % 2 == 0, 'embedding dimensionality must be even'
self.rows_embeddings = nn.Embedding(50, embedding_dim//2)
self.cols_embeddings = nn.Embedding(50, embedding_dim//2)
def forward(self, pixel_values, pixel_mask=None):
h, w = pixel_values.shape[-2:]
i = torch.arange(w, device=pixel_values.device)
j = torch.arange(h, device=pixel_values.device)
x_emb = self.cols_embeddings(i)
y_emb = self.rows_embeddings(j)
pos = torch.cat([x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1)], dim=-1)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
return pos
class Box8PositionEmbedding2D(nn.Module):
def __init__(self, embedding_dim, with_projection=True):
super().__init__()
self.proj = None
if with_projection:
self.proj = nn.Linear(8, embedding_dim)
nn.init.xavier_normal_(self.proj.weight)
nn.init.zeros_(self.proj.bias)
def forward(self, fmap, fmap_mask=None):
N, _, H, W = fmap.size()
y1, x1 = torch.meshgrid(
torch.arange(H, device=fmap.device, dtype=torch.float)/H,
torch.arange(W, device=fmap.device, dtype=torch.float)/W
)
y2, x2 = x1+1.0/W, y1+1.0/H
ww, hh = x2-x1, y2-y1
# x1, y1 = 2*x1-1, 2*y1-1
# x2, y2 = 2*x2-1, 2*y2-1
xc, yc = x1+0.5/W, y1+0.5/H
pos = torch.stack([x1, y1, x2, y2, xc, yc, ww, hh], dim=-1)
if self.proj is not None:
pos = self.proj(pos)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0).repeat(N, 1, 1, 1)
return pos
def encode_boxes(self, boxes):
x1, y1, x2, y2 = boxes.unbind(-1)
ww, hh = x2-x1, y2-y1
xc, yc = x1+0.5*ww, y1+0.5*hh
pos = torch.stack([x1, y1, x2, y2, xc, yc, ww, hh], dim=-1)
if self.proj is not None:
pos = self.proj(pos)
return pos
class RelativePositionEmbedding2D(nn.Module):
def __init__(self, embedding_dim, spatial_bins=(16, 16), with_projection=True):
super().__init__()
assert isinstance(spatial_bins, (list, tuple)) and len(spatial_bins) == 2
self.spatial_bins = spatial_bins
self.proj = None
if with_projection:
self.proj = nn.Linear(2*spatial_bins[0]*spatial_bins[1], embedding_dim)
nn.init.xavier_normal_(self.proj.weight)
nn.init.zeros_(self.proj.bias)
def forward(self, fmap, fmap_mask=None):
N, _, H, W = fmap.size()
BH, BW = self.spatial_bins
yc, xc = torch.meshgrid(
0.5/BH + torch.arange(BH, device=fmap.device, dtype=torch.float)/BH,
0.5/BW + torch.arange(BW, device=fmap.device, dtype=torch.float)/BW
)
pos = torch.stack([xc, yc], dim=-1).view(-1, 1, 2)
pos = (pos - pos.transpose(0, 1)).reshape(BH, BW, -1) # relative positions
if self.proj is not None:
pos = self.proj(pos)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
if H != BH or W != BW:
pos = nn.functional.interpolate(pos, (H, W), mode='nearest')
pos = pos.repeat(N, 1, 1, 1)
return pos
|