Spaces:
Build error
Build error
DiegoLigtenberg
commited on
Commit
•
2652f0e
1
Parent(s):
5d15781
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from models import BagOfModels, SoundToText, TextToSummary
|
3 |
+
from settings import MODEL_PARSER
|
4 |
+
args = MODEL_PARSER
|
5 |
+
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="TTS Applications | Incore Solutions",
|
8 |
+
layout="wide",
|
9 |
+
menu_items={
|
10 |
+
"About": """This is a simple GUI for OpenAI's Whisper.""",
|
11 |
+
},
|
12 |
+
)
|
13 |
+
|
14 |
+
def open_instructions():
|
15 |
+
with open("instructions.md", "r") as f:
|
16 |
+
st.write(f.read())
|
17 |
+
|
18 |
+
# Render input type selection on the sidebar & the form
|
19 |
+
input_type = st.sidebar.selectbox("Input Type", ["YouTube", "File"])
|
20 |
+
|
21 |
+
with st.sidebar.form("input_form"):
|
22 |
+
if input_type == "YouTube":
|
23 |
+
youtube_url = st.text_input("Youtube URL")
|
24 |
+
elif input_type == "File":
|
25 |
+
input_file = st.file_uploader("File", type=["mp3", "wav"])
|
26 |
+
|
27 |
+
whisper_model = st.selectbox("Whisper model", options = [whisper for whisper in BagOfModels.get_model_names() if "whisper" in whisper] , index=1)
|
28 |
+
|
29 |
+
summary = st.checkbox("summarize")
|
30 |
+
if summary:
|
31 |
+
min_sum = st.number_input("Minimum words in the summary", min_value=1, step=1)
|
32 |
+
max_sum = min(min_sum,st.number_input("Maximum words in the summary", min_value=2, step=1))
|
33 |
+
st.form_submit_button(label="Save settings")
|
34 |
+
with st.sidebar.form("save settings"):
|
35 |
+
transcribe = st.form_submit_button(label="Transcribe!")
|
36 |
+
|
37 |
+
|
38 |
+
if transcribe:
|
39 |
+
if input_type == "YouTube":
|
40 |
+
if youtube_url and youtube_url.startswith("http"):
|
41 |
+
model = BagOfModels.load_model(whisper_model,**vars(args))
|
42 |
+
st.session_state.transcription = model.predict_stt(source=youtube_url,source_type=input_type,model_task="stt")
|
43 |
+
else:
|
44 |
+
st.error("Please enter a valid YouTube URL")
|
45 |
+
open_instructions()
|
46 |
+
|
47 |
+
elif input_type == "File":
|
48 |
+
if input_file:
|
49 |
+
model = BagOfModels.load_model(whisper_model,**vars(args))
|
50 |
+
st.session_state.transcription = model.predict_stt(source=input_file,source_type=input_type,model_task="stt")
|
51 |
+
else:
|
52 |
+
st.error("Please upload a file")
|
53 |
+
|
54 |
+
if "transcription" in st.session_state:
|
55 |
+
st.session_state.transcription.whisper()
|
56 |
+
|
57 |
+
# create two columns to separate page and youtube video
|
58 |
+
transcription_col, media_col = st.columns(2, gap="large")
|
59 |
+
|
60 |
+
transcription_col.markdown("#### Audio")
|
61 |
+
with open(st.session_state.transcription.audio_path, "rb") as f:
|
62 |
+
transcription_col.audio(f.read())
|
63 |
+
transcription_col.markdown("---")
|
64 |
+
transcription_col.markdown(f"#### Transcription (whisper model - `{whisper_model}`)")
|
65 |
+
transcription_col.markdown(f"##### Language: `{st.session_state.transcription.language}`")
|
66 |
+
|
67 |
+
# Trim raw transcribed output off tokens to simplify
|
68 |
+
raw_output = transcription_col.expander("Raw output")
|
69 |
+
raw_output.markdown(st.session_state.transcription.raw_output["text"])
|
70 |
+
|
71 |
+
if summary:
|
72 |
+
summarized_output = transcription_col.expander("summarized output")
|
73 |
+
# CURRENTLY ONLY SUPPORTS 1024 WORD TOKENS -> TODO: FIND METHOD TO INCREASE SUMMARY FOR LONGER VIDS -> 1024 * 4 = aprox 800 words within 1024 range
|
74 |
+
text_summary = TextToSummary(str(st.session_state.transcription.text[:1024*4]),min_sum,max_sum).get_summary()
|
75 |
+
summarized_output.markdown(text_summary[0]["summary_text"])
|
76 |
+
|
77 |
+
# Show transcription in format with timers added to text
|
78 |
+
time_annotated_output = transcription_col.expander("time_annotated_output")
|
79 |
+
for segment in st.session_state.transcription.segments:
|
80 |
+
time_annotated_output.markdown(
|
81 |
+
f"""[{round(segment["start"], 1)} - {round(segment["end"], 1)}] - {segment["text"]}"""
|
82 |
+
)
|
83 |
+
|
84 |
+
# Show input youtube video
|
85 |
+
if input_type == "YouTube":
|
86 |
+
media_col.markdown("---")
|
87 |
+
media_col.markdown("#### Original YouTube Video")
|
88 |
+
media_col.video(st.session_state.transcription.source)
|
89 |
+
else:
|
90 |
+
pass
|
91 |
+
|