DiffusionArtco's picture
Update app.py
f086e43
import gradio as gr
import requests
from PIL import Image
from io import BytesIO
import base64
api_url = "https://5cb20b40-572c-426f-9466-995256f9b6eb.id.repl.co/generate_image"
def generate_image(model="FaeTastic", prompt="", seed=0, negative_prompt="", sampler="k_dpmpp_2s_a", steps=50):
data = "?model=" + model + "&prompt=" + prompt + "&seed=" + str(seed) + "&negative_prompt=" + negative_prompt + "&sampler=" + sampler + "&steps=" + str(steps)
response = requests.post(api_url + data, timeout=400)
if response.status_code == 200:
img_base64 = response.json()["url"]
img_bytes = base64.b64decode(img_base64)
img = Image.open(BytesIO(img_bytes))
return img
else:
return None
inputs = [
gr.inputs.Dropdown(['Anygen', 'FaeTastic', 'HASDX', 'NeverEnding Dream', 'Openniji', 'PFG', 'PRMJ', 'ProtoGen', 'RealBiter' 'RCNZ Dumb Monkey', 'Uhmami', 'Unstable Ink Dream', 'Woop-Woop Photo' ], label="Model", default="FaeTastic"),
gr.inputs.Textbox(label="Prompt"),
gr.inputs.Number(label="Seed", default=0),
gr.inputs.Textbox(label="Negative Prompt", default=""),
gr.inputs.Dropdown(["k_lms", "k_heun", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "DDIM", "k_dpm_fast", "k_dpm_adaptive", "k_dpmpp_2m", "k_dpmpp_2s_a", "k_dpmpp_sde"], label="Sampler", default="k_dpmpp_2s_a"),
gr.inputs.Number(label="Steps", default=50)
]
outputs = gr.outputs.Image(label="Generated Image", type="pil")
interface = gr.Interface(generate_image, inputs, outputs, title="",
description="<center>Some of the best Semi-realistic Diffusion Models</center>",
examples=[])
interface.launch()