Kinyarwanda-asr / app_upload_model_input.py
rutsam's picture
push the code
3119dd6
import gradio as gr
import librosa
import soundfile as sf
import torch
import warnings
import os
from transformers import Wav2Vec2ProcessorWithLM, Wav2Vec2CTCTokenizer, Wav2Vec2Model
warnings.filterwarnings("ignore")
from speechbrain.pretrained import EncoderDecoderASR
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-rw", savedir="pretrained_models/asr-wav2vec2-commonvoice-rw")
#asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-rw/example.mp3")
# define speech-to-text function
def asr_transcript(audio, audio_microphone, model_params):
audio = audio_microphone if audio_microphone else audio
if audio == None and audio_microphone == None:
return "Please provide audio by uploading a file or by recording audio using microphone by pressing Record (And allow usage of microphone)", "Please provide audio by uploading a file or by recording audio using microphone by pressing Record (And allow usage of microphone)"
text = ""
if audio:
text = asr_model.transcribe_file(audio.name)
return text
else:
return "File not valid"
gradio_ui = gr.Interface(
fn=asr_transcript,
title="Kinyarwanda Speech Recognition",
description="Upload an audio clip or record from browser using microphone, and let AI do the hard work of transcribing.",
article = """
This demo showcases the pretrained model from deepspeech.
""",
inputs=[gr.inputs.Audio(label="Upload Audio File", type="file", optional=True), gr.inputs.Audio(source="microphone", type="file", optional=True, label="Record from microphone"), gr.inputs.Dropdown(choices=["deepspeech","coqui (soon)"], type="value", default="deepspeech", label="Select speech recognition model ", optional=False)],
outputs=[gr.outputs.Textbox(label="Recognized speech")],
examples = [["sample_1.wav","sample_1.wav","deepspeech"],["sample_2.wav","sample_2.wav","deepspeech"]]
)
gradio_ui.launch(enable_queue=True)