Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import transforms, datasets, models
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
transformer = models.ResNet18_Weights.IMAGENET1K_V1.transforms()
|
7 |
+
transformer
|
8 |
+
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
class_names = ['Ahegao', 'Angry', 'Happy', 'Neutral', 'Sad', 'Surprise']
|
12 |
+
classes_count = len(class_names)
|
13 |
+
|
14 |
+
model = models.resnet18(weights='DEFAULT').to(device)
|
15 |
+
model.fc = nn.Sequential(
|
16 |
+
nn.Linear(512, classes_count)
|
17 |
+
)
|
18 |
+
model.load_state_dict(torch.load('./model_params.pt', map_location=device), strict=False)
|
19 |
+
|
20 |
+
def predict(image):
|
21 |
+
transformed_image = transformer(image).unsqueeze(0).to(device)
|
22 |
+
model.eval()
|
23 |
+
|
24 |
+
with torch.inference_mode():
|
25 |
+
pred = torch.softmax(model(transformed_image), dim=1)
|
26 |
+
|
27 |
+
pred_and_labels = {class_names[i]: pred[0][i].item() for i in range(len(pred[0]))}
|
28 |
+
|
29 |
+
return pred_and_labels
|
30 |
+
|
31 |
+
title = "Emotion Checker"
|
32 |
+
description = "Can classify 6 emotions: Ahegao, Angry, Happy, Neutral, Sad, Surprise"
|
33 |
+
|
34 |
+
examples = [
|
35 |
+
'./example_1.jpg',
|
36 |
+
'./example_2.jpg',
|
37 |
+
'./example_3.jpg',
|
38 |
+
'./example_4.jpg',
|
39 |
+
'./example_5.jpg',
|
40 |
+
'./example_6.jpg',
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
app = gr.Interface(
|
45 |
+
fn=predict,
|
46 |
+
inputs=gr.Image(type="pil"),
|
47 |
+
outputs=[gr.Label(num_top_classes=classes_count, label="Predictions")],
|
48 |
+
examples=examples,
|
49 |
+
title=title,
|
50 |
+
description=description
|
51 |
+
)
|
52 |
+
|
53 |
+
app.launch(
|
54 |
+
share=True,
|
55 |
+
height=800
|
56 |
+
)
|