File size: 3,335 Bytes
ba5dcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

"""Frechet Inception Distance (FID)."""

import os
import numpy as np
import scipy
import tensorflow as tf
import dnnlib.tflib as tflib

from metrics import metric_base
from training import misc

#----------------------------------------------------------------------------

class FID(metric_base.MetricBase):
    def __init__(self, num_images, minibatch_per_gpu, **kwargs):
        super().__init__(**kwargs)
        self.num_images = num_images
        self.minibatch_per_gpu = minibatch_per_gpu

    def _evaluate(self, Gs, num_gpus):
        minibatch_size = num_gpus * self.minibatch_per_gpu
        inception = misc.load_pkl('https://drive.google.com/uc?id=1MzTY44rLToO5APn8TZmfR7_ENSe5aZUn') # inception_v3_features.pkl
        activations = np.empty([self.num_images, inception.output_shape[1]], dtype=np.float32)

        # Calculate statistics for reals.
        cache_file = self._get_cache_file_for_reals(num_images=self.num_images)
        os.makedirs(os.path.dirname(cache_file), exist_ok=True)
        if os.path.isfile(cache_file):
            mu_real, sigma_real = misc.load_pkl(cache_file)
        else:
            for idx, images in enumerate(self._iterate_reals(minibatch_size=minibatch_size)):
                begin = idx * minibatch_size
                end = min(begin + minibatch_size, self.num_images)
                activations[begin:end] = inception.run(images[:end-begin], num_gpus=num_gpus, assume_frozen=True)
                if end == self.num_images:
                    break
            mu_real = np.mean(activations, axis=0)
            sigma_real = np.cov(activations, rowvar=False)
            misc.save_pkl((mu_real, sigma_real), cache_file)

        # Construct TensorFlow graph.
        result_expr = []
        for gpu_idx in range(num_gpus):
            with tf.device('/gpu:%d' % gpu_idx):
                Gs_clone = Gs.clone()
                inception_clone = inception.clone()
                latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
                images = Gs_clone.get_output_for(latents, None, is_validation=True, randomize_noise=True)
                images = tflib.convert_images_to_uint8(images)
                result_expr.append(inception_clone.get_output_for(images))

        # Calculate statistics for fakes.
        for begin in range(0, self.num_images, minibatch_size):
            end = min(begin + minibatch_size, self.num_images)
            activations[begin:end] = np.concatenate(tflib.run(result_expr), axis=0)[:end-begin]
        mu_fake = np.mean(activations, axis=0)
        sigma_fake = np.cov(activations, rowvar=False)

        # Calculate FID.
        m = np.square(mu_fake - mu_real).sum()
        s, _ = scipy.linalg.sqrtm(np.dot(sigma_fake, sigma_real), disp=False) # pylint: disable=no-member
        dist = m + np.trace(sigma_fake + sigma_real - 2*s)
        self._report_result(np.real(dist))

#----------------------------------------------------------------------------