File size: 12,220 Bytes
ba5dcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

"""Multi-resolution input data pipeline."""

import os
import glob
import numpy as np
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib

#----------------------------------------------------------------------------
# Parse individual image from a tfrecords file.

def parse_tfrecord_tf(record):
    features = tf.parse_single_example(record, features={
        'shape': tf.FixedLenFeature([3], tf.int64),
        'data': tf.FixedLenFeature([], tf.string)})
    data = tf.decode_raw(features['data'], tf.uint8)
    return tf.reshape(data, features['shape'])

def parse_tfrecord_np(record):
    ex = tf.train.Example()
    ex.ParseFromString(record)
    shape = ex.features.feature['shape'].int64_list.value # temporary pylint workaround # pylint: disable=no-member
    data = ex.features.feature['data'].bytes_list.value[0] # temporary pylint workaround # pylint: disable=no-member
    return np.fromstring(data, np.uint8).reshape(shape)

#----------------------------------------------------------------------------
# Dataset class that loads data from tfrecords files.

class TFRecordDataset:
    def __init__(self,
        tfrecord_dir,               # Directory containing a collection of tfrecords files.
        resolution      = None,     # Dataset resolution, None = autodetect.
        label_file      = None,     # Relative path of the labels file, None = autodetect.
        max_label_size  = 0,        # 0 = no labels, 'full' = full labels, <int> = N first label components.
        repeat          = True,     # Repeat dataset indefinitely.
        shuffle_mb      = 4096,     # Shuffle data within specified window (megabytes), 0 = disable shuffling.
        prefetch_mb     = 2048,     # Amount of data to prefetch (megabytes), 0 = disable prefetching.
        buffer_mb       = 256,      # Read buffer size (megabytes).
        num_threads     = 2):       # Number of concurrent threads.

        self.tfrecord_dir       = tfrecord_dir
        self.resolution         = None
        self.resolution_log2    = None
        self.shape              = []        # [channel, height, width]
        self.dtype              = 'uint8'
        self.dynamic_range      = [0, 255]
        self.label_file         = label_file
        self.label_size         = None      # [component]
        self.label_dtype        = None
        self._np_labels         = None
        self._tf_minibatch_in   = None
        self._tf_labels_var     = None
        self._tf_labels_dataset = None
        self._tf_datasets       = dict()
        self._tf_iterator       = None
        self._tf_init_ops       = dict()
        self._tf_minibatch_np   = None
        self._cur_minibatch     = -1
        self._cur_lod           = -1

        # List tfrecords files and inspect their shapes.
        assert os.path.isdir(self.tfrecord_dir)
        tfr_files = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.tfrecords')))
        assert len(tfr_files) >= 1
        tfr_shapes = []
        for tfr_file in tfr_files:
            tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE)
            for record in tf.python_io.tf_record_iterator(tfr_file, tfr_opt):
                tfr_shapes.append(parse_tfrecord_np(record).shape)
                break

        # Autodetect label filename.
        if self.label_file is None:
            guess = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.labels')))
            if len(guess):
                self.label_file = guess[0]
        elif not os.path.isfile(self.label_file):
            guess = os.path.join(self.tfrecord_dir, self.label_file)
            if os.path.isfile(guess):
                self.label_file = guess

        # Determine shape and resolution.
        max_shape = max(tfr_shapes, key=np.prod)
        self.resolution = resolution if resolution is not None else max_shape[1]
        self.resolution_log2 = int(np.log2(self.resolution))
        self.shape = [max_shape[0], self.resolution, self.resolution]
        tfr_lods = [self.resolution_log2 - int(np.log2(shape[1])) for shape in tfr_shapes]
        assert all(shape[0] == max_shape[0] for shape in tfr_shapes)
        assert all(shape[1] == shape[2] for shape in tfr_shapes)
        assert all(shape[1] == self.resolution // (2**lod) for shape, lod in zip(tfr_shapes, tfr_lods))
        assert all(lod in tfr_lods for lod in range(self.resolution_log2 - 1))

        # Load labels.
        assert max_label_size == 'full' or max_label_size >= 0
        self._np_labels = np.zeros([1<<20, 0], dtype=np.float32)
        if self.label_file is not None and max_label_size != 0:
            self._np_labels = np.load(self.label_file)
            assert self._np_labels.ndim == 2
        if max_label_size != 'full' and self._np_labels.shape[1] > max_label_size:
            self._np_labels = self._np_labels[:, :max_label_size]
        self.label_size = self._np_labels.shape[1]
        self.label_dtype = self._np_labels.dtype.name

        # Build TF expressions.
        with tf.name_scope('Dataset'), tf.device('/cpu:0'):
            self._tf_minibatch_in = tf.placeholder(tf.int64, name='minibatch_in', shape=[])
            self._tf_labels_var = tflib.create_var_with_large_initial_value(self._np_labels, name='labels_var')
            self._tf_labels_dataset = tf.data.Dataset.from_tensor_slices(self._tf_labels_var)
            for tfr_file, tfr_shape, tfr_lod in zip(tfr_files, tfr_shapes, tfr_lods):
                if tfr_lod < 0:
                    continue
                dset = tf.data.TFRecordDataset(tfr_file, compression_type='', buffer_size=buffer_mb<<20)
                dset = dset.map(parse_tfrecord_tf, num_parallel_calls=num_threads)
                dset = tf.data.Dataset.zip((dset, self._tf_labels_dataset))
                bytes_per_item = np.prod(tfr_shape) * np.dtype(self.dtype).itemsize
                if shuffle_mb > 0:
                    dset = dset.shuffle(((shuffle_mb << 20) - 1) // bytes_per_item + 1)
                if repeat:
                    dset = dset.repeat()
                if prefetch_mb > 0:
                    dset = dset.prefetch(((prefetch_mb << 20) - 1) // bytes_per_item + 1)
                dset = dset.batch(self._tf_minibatch_in)
                self._tf_datasets[tfr_lod] = dset
            self._tf_iterator = tf.data.Iterator.from_structure(self._tf_datasets[0].output_types, self._tf_datasets[0].output_shapes)
            self._tf_init_ops = {lod: self._tf_iterator.make_initializer(dset) for lod, dset in self._tf_datasets.items()}

    # Use the given minibatch size and level-of-detail for the data returned by get_minibatch_tf().
    def configure(self, minibatch_size, lod=0):
        lod = int(np.floor(lod))
        assert minibatch_size >= 1 and lod in self._tf_datasets
        if self._cur_minibatch != minibatch_size or self._cur_lod != lod:
            self._tf_init_ops[lod].run({self._tf_minibatch_in: minibatch_size})
            self._cur_minibatch = minibatch_size
            self._cur_lod = lod

    # Get next minibatch as TensorFlow expressions.
    def get_minibatch_tf(self): # => images, labels
        return self._tf_iterator.get_next()

    # Get next minibatch as NumPy arrays.
    def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels
        self.configure(minibatch_size, lod)
        if self._tf_minibatch_np is None:
            self._tf_minibatch_np = self.get_minibatch_tf()
        return tflib.run(self._tf_minibatch_np)

    # Get random labels as TensorFlow expression.
    def get_random_labels_tf(self, minibatch_size): # => labels
        if self.label_size > 0:
            with tf.device('/cpu:0'):
                return tf.gather(self._tf_labels_var, tf.random_uniform([minibatch_size], 0, self._np_labels.shape[0], dtype=tf.int32))
        return tf.zeros([minibatch_size, 0], self.label_dtype)

    # Get random labels as NumPy array.
    def get_random_labels_np(self, minibatch_size): # => labels
        if self.label_size > 0:
            return self._np_labels[np.random.randint(self._np_labels.shape[0], size=[minibatch_size])]
        return np.zeros([minibatch_size, 0], self.label_dtype)

#----------------------------------------------------------------------------
# Base class for datasets that are generated on the fly.

class SyntheticDataset:
    def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'):
        self.resolution         = resolution
        self.resolution_log2    = int(np.log2(resolution))
        self.shape              = [num_channels, resolution, resolution]
        self.dtype              = dtype
        self.dynamic_range      = dynamic_range
        self.label_size         = label_size
        self.label_dtype        = label_dtype
        self._tf_minibatch_var  = None
        self._tf_lod_var        = None
        self._tf_minibatch_np   = None
        self._tf_labels_np      = None

        assert self.resolution == 2 ** self.resolution_log2
        with tf.name_scope('Dataset'):
            self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var')
            self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var')

    def configure(self, minibatch_size, lod=0):
        lod = int(np.floor(lod))
        assert minibatch_size >= 1 and 0 <= lod <= self.resolution_log2
        tflib.set_vars({self._tf_minibatch_var: minibatch_size, self._tf_lod_var: lod})

    def get_minibatch_tf(self): # => images, labels
        with tf.name_scope('SyntheticDataset'):
            shrink = tf.cast(2.0 ** tf.cast(self._tf_lod_var, tf.float32), tf.int32)
            shape = [self.shape[0], self.shape[1] // shrink, self.shape[2] // shrink]
            images = self._generate_images(self._tf_minibatch_var, self._tf_lod_var, shape)
            labels = self._generate_labels(self._tf_minibatch_var)
            return images, labels

    def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels
        self.configure(minibatch_size, lod)
        if self._tf_minibatch_np is None:
            self._tf_minibatch_np = self.get_minibatch_tf()
        return tflib.run(self._tf_minibatch_np)

    def get_random_labels_tf(self, minibatch_size): # => labels
        with tf.name_scope('SyntheticDataset'):
            return self._generate_labels(minibatch_size)

    def get_random_labels_np(self, minibatch_size): # => labels
        self.configure(minibatch_size)
        if self._tf_labels_np is None:
            self._tf_labels_np = self.get_random_labels_tf(minibatch_size)
        return tflib.run(self._tf_labels_np)

    def _generate_images(self, minibatch, lod, shape): # to be overridden by subclasses # pylint: disable=unused-argument
        return tf.zeros([minibatch] + shape, self.dtype)

    def _generate_labels(self, minibatch): # to be overridden by subclasses
        return tf.zeros([minibatch, self.label_size], self.label_dtype)

#----------------------------------------------------------------------------
# Helper func for constructing a dataset object using the given options.

def load_dataset(class_name='training.dataset.TFRecordDataset', data_dir=None, verbose=False, **kwargs):
    adjusted_kwargs = dict(kwargs)
    if 'tfrecord_dir' in adjusted_kwargs and data_dir is not None:
        adjusted_kwargs['tfrecord_dir'] = os.path.join(data_dir, adjusted_kwargs['tfrecord_dir'])
    if verbose:
        print('Streaming data using %s...' % class_name)
    dataset = dnnlib.util.get_obj_by_name(class_name)(**adjusted_kwargs)
    if verbose:
        print('Dataset shape =', np.int32(dataset.shape).tolist())
        print('Dynamic range =', dataset.dynamic_range)
        print('Label size    =', dataset.label_size)
    return dataset

#----------------------------------------------------------------------------