File size: 9,998 Bytes
ba5dcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

"""Miscellaneous utility functions."""

import os
import glob
import pickle
import re
import numpy as np
from collections import defaultdict
import PIL.Image
import dnnlib

import config
from training import dataset

#----------------------------------------------------------------------------
# Convenience wrappers for pickle that are able to load data produced by
# older versions of the code, and from external URLs.

def open_file_or_url(file_or_url):
    if dnnlib.util.is_url(file_or_url):
        return dnnlib.util.open_url(file_or_url, cache_dir=config.cache_dir)
    return open(file_or_url, 'rb')

def load_pkl(file_or_url):
    with open_file_or_url(file_or_url) as file:
        return pickle.load(file, encoding='latin1')

def save_pkl(obj, filename):
    with open(filename, 'wb') as file:
        pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)

#----------------------------------------------------------------------------
# Image utils.

def adjust_dynamic_range(data, drange_in, drange_out):
    if drange_in != drange_out:
        scale = (np.float32(drange_out[1]) - np.float32(drange_out[0])) / (np.float32(drange_in[1]) - np.float32(drange_in[0]))
        bias = (np.float32(drange_out[0]) - np.float32(drange_in[0]) * scale)
        data = data * scale + bias
    return data

def create_image_grid(images, grid_size=None):
    assert images.ndim == 3 or images.ndim == 4
    num, img_w, img_h = images.shape[0], images.shape[-1], images.shape[-2]

    if grid_size is not None:
        grid_w, grid_h = tuple(grid_size)
    else:
        grid_w = max(int(np.ceil(np.sqrt(num))), 1)
        grid_h = max((num - 1) // grid_w + 1, 1)

    grid = np.zeros(list(images.shape[1:-2]) + [grid_h * img_h, grid_w * img_w], dtype=images.dtype)
    for idx in range(num):
        x = (idx % grid_w) * img_w
        y = (idx // grid_w) * img_h
        grid[..., y : y + img_h, x : x + img_w] = images[idx]
    return grid

def convert_to_pil_image(image, drange=[0,1]):
    assert image.ndim == 2 or image.ndim == 3
    if image.ndim == 3:
        if image.shape[0] == 1:
            image = image[0] # grayscale CHW => HW
        else:
            image = image.transpose(1, 2, 0) # CHW -> HWC

    image = adjust_dynamic_range(image, drange, [0,255])
    image = np.rint(image).clip(0, 255).astype(np.uint8)
    fmt = 'RGB' if image.ndim == 3 else 'L'
    return PIL.Image.fromarray(image, fmt)

def save_image(image, filename, drange=[0,1], quality=95):
    img = convert_to_pil_image(image, drange)
    if '.jpg' in filename:
        img.save(filename,"JPEG", quality=quality, optimize=True)
    else:
        img.save(filename)

def save_image_grid(images, filename, drange=[0,1], grid_size=None):
    convert_to_pil_image(create_image_grid(images, grid_size), drange).save(filename)

#----------------------------------------------------------------------------
# Locating results.

def locate_run_dir(run_id_or_run_dir):
    if isinstance(run_id_or_run_dir, str):
        if os.path.isdir(run_id_or_run_dir):
            return run_id_or_run_dir
        converted = dnnlib.submission.submit.convert_path(run_id_or_run_dir)
        if os.path.isdir(converted):
            return converted

    run_dir_pattern = re.compile('^0*%s-' % str(run_id_or_run_dir))
    for search_dir in ['']:
        full_search_dir = config.result_dir if search_dir == '' else os.path.normpath(os.path.join(config.result_dir, search_dir))
        run_dir = os.path.join(full_search_dir, str(run_id_or_run_dir))
        if os.path.isdir(run_dir):
            return run_dir
        run_dirs = sorted(glob.glob(os.path.join(full_search_dir, '*')))
        run_dirs = [run_dir for run_dir in run_dirs if run_dir_pattern.match(os.path.basename(run_dir))]
        run_dirs = [run_dir for run_dir in run_dirs if os.path.isdir(run_dir)]
        if len(run_dirs) == 1:
            return run_dirs[0]
    raise IOError('Cannot locate result subdir for run', run_id_or_run_dir)

def list_network_pkls(run_id_or_run_dir, include_final=True):
    run_dir = locate_run_dir(run_id_or_run_dir)
    pkls = sorted(glob.glob(os.path.join(run_dir, 'network-*.pkl')))
    if len(pkls) >= 1 and os.path.basename(pkls[0]) == 'network-final.pkl':
        if include_final:
            pkls.append(pkls[0])
        del pkls[0]
    return pkls

def locate_network_pkl(run_id_or_run_dir_or_network_pkl, snapshot_or_network_pkl=None):
    for candidate in [snapshot_or_network_pkl, run_id_or_run_dir_or_network_pkl]:
        if isinstance(candidate, str):
            if os.path.isfile(candidate):
                return candidate
            converted = dnnlib.submission.submit.convert_path(candidate)
            if os.path.isfile(converted):
                return converted

    pkls = list_network_pkls(run_id_or_run_dir_or_network_pkl)
    if len(pkls) >= 1 and snapshot_or_network_pkl is None:
        return pkls[-1]

    for pkl in pkls:
        try:
            name = os.path.splitext(os.path.basename(pkl))[0]
            number = int(name.split('-')[-1])
            if number == snapshot_or_network_pkl:
                return pkl
        except ValueError: pass
        except IndexError: pass
    raise IOError('Cannot locate network pkl for snapshot', snapshot_or_network_pkl)

def get_id_string_for_network_pkl(network_pkl):
    p = network_pkl.replace('.pkl', '').replace('\\', '/').split('/')
    return '-'.join(p[max(len(p) - 2, 0):])

#----------------------------------------------------------------------------
# Loading data from previous training runs.

def load_network_pkl(run_id_or_run_dir_or_network_pkl, snapshot_or_network_pkl=None):
    return load_pkl(locate_network_pkl(run_id_or_run_dir_or_network_pkl, snapshot_or_network_pkl))

def parse_config_for_previous_run(run_id):
    run_dir = locate_run_dir(run_id)

    # Parse config.txt.
    cfg = defaultdict(dict)
    with open(os.path.join(run_dir, 'config.txt'), 'rt') as f:
        for line in f:
            line = re.sub(r"^{?\s*'(\w+)':\s*{(.*)(},|}})$", r"\1 = {\2}", line.strip())
            if line.startswith('dataset =') or line.startswith('train ='):
                exec(line, cfg, cfg) # pylint: disable=exec-used

    # Handle legacy options.
    if 'file_pattern' in cfg['dataset']:
        cfg['dataset']['tfrecord_dir'] = cfg['dataset'].pop('file_pattern').replace('-r??.tfrecords', '')
    if 'mirror_augment' in cfg['dataset']:
        cfg['train']['mirror_augment'] = cfg['dataset'].pop('mirror_augment')
    if 'max_labels' in cfg['dataset']:
        v = cfg['dataset'].pop('max_labels')
        if v is None: v = 0
        if v == 'all': v = 'full'
        cfg['dataset']['max_label_size'] = v
    if 'max_images' in cfg['dataset']:
        cfg['dataset'].pop('max_images')
    return cfg

def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment
    cfg = parse_config_for_previous_run(run_id)
    cfg['dataset'].update(kwargs)
    dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **cfg['dataset'])
    mirror_augment = cfg['train'].get('mirror_augment', False)
    return dataset_obj, mirror_augment

def apply_mirror_augment(minibatch):
    mask = np.random.rand(minibatch.shape[0]) < 0.5
    minibatch = np.array(minibatch)
    minibatch[mask] = minibatch[mask, :, :, ::-1]
    return minibatch

#----------------------------------------------------------------------------
# Size and contents of the image snapshot grids that are exported
# periodically during training.

def setup_snapshot_image_grid(G, training_set,
    size    = '1080p',      # '1080p' = to be viewed on 1080p display, '4k' = to be viewed on 4k display.
    layout  = 'random'):    # 'random' = grid contents are selected randomly, 'row_per_class' = each row corresponds to one class label.

    # Select size.
    gw = 1; gh = 1
    if size == '1080p':
        gw = np.clip(1920 // G.output_shape[3], 3, 32)
        gh = np.clip(1080 // G.output_shape[2], 2, 32)
    if size == '4k':
        gw = np.clip(3840 // G.output_shape[3], 7, 32)
        gh = np.clip(2160 // G.output_shape[2], 4, 32)

    # Initialize data arrays.
    reals = np.zeros([gw * gh] + training_set.shape, dtype=training_set.dtype)
    labels = np.zeros([gw * gh, training_set.label_size], dtype=training_set.label_dtype)
    latents = np.random.randn(gw * gh, *G.input_shape[1:])

    # Random layout.
    if layout == 'random':
        reals[:], labels[:] = training_set.get_minibatch_np(gw * gh)

    # Class-conditional layouts.
    class_layouts = dict(row_per_class=[gw,1], col_per_class=[1,gh], class4x4=[4,4])
    if layout in class_layouts:
        bw, bh = class_layouts[layout]
        nw = (gw - 1) // bw + 1
        nh = (gh - 1) // bh + 1
        blocks = [[] for _i in range(nw * nh)]
        for _iter in range(1000000):
            real, label = training_set.get_minibatch_np(1)
            idx = np.argmax(label[0])
            while idx < len(blocks) and len(blocks[idx]) >= bw * bh:
                idx += training_set.label_size
            if idx < len(blocks):
                blocks[idx].append((real, label))
                if all(len(block) >= bw * bh for block in blocks):
                    break
        for i, block in enumerate(blocks):
            for j, (real, label) in enumerate(block):
                x = (i %  nw) * bw + j %  bw
                y = (i // nw) * bh + j // bw
                if x < gw and y < gh:
                    reals[x + y * gw] = real[0]
                    labels[x + y * gw] = label[0]

    return (gw, gh), reals, labels, latents

#----------------------------------------------------------------------------