Spaces:
Runtime error
Runtime error
File size: 15,522 Bytes
ba5dcdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Main training script."""
import os
import numpy as np
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib
from dnnlib.tflib.autosummary import autosummary
import config
import train
from training import dataset
from training import misc
from metrics import metric_base
#----------------------------------------------------------------------------
# Just-in-time processing of training images before feeding them to the networks.
def process_reals(x, lod, mirror_augment, drange_data, drange_net):
with tf.name_scope('ProcessReals'):
with tf.name_scope('DynamicRange'):
x = tf.cast(x, tf.float32)
x = misc.adjust_dynamic_range(x, drange_data, drange_net)
if mirror_augment:
with tf.name_scope('MirrorAugment'):
s = tf.shape(x)
mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
mask = tf.tile(mask, [1, s[1], s[2], s[3]])
x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
with tf.name_scope('FadeLOD'): # Smooth crossfade between consecutive levels-of-detail.
s = tf.shape(x)
y = tf.reshape(x, [-1, s[1], s[2]//2, 2, s[3]//2, 2])
y = tf.reduce_mean(y, axis=[3, 5], keepdims=True)
y = tf.tile(y, [1, 1, 1, 2, 1, 2])
y = tf.reshape(y, [-1, s[1], s[2], s[3]])
x = tflib.lerp(x, y, lod - tf.floor(lod))
with tf.name_scope('UpscaleLOD'): # Upscale to match the expected input/output size of the networks.
s = tf.shape(x)
factor = tf.cast(2 ** tf.floor(lod), tf.int32)
x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
x = tf.tile(x, [1, 1, 1, factor, 1, factor])
x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
return x
#----------------------------------------------------------------------------
# Evaluate time-varying training parameters.
def training_schedule(
cur_nimg,
training_set,
num_gpus,
lod_initial_resolution = 4, # Image resolution used at the beginning.
lod_training_kimg = 600, # Thousands of real images to show before doubling the resolution.
lod_transition_kimg = 600, # Thousands of real images to show when fading in new layers.
minibatch_base = 16, # Maximum minibatch size, divided evenly among GPUs.
minibatch_dict = {}, # Resolution-specific overrides.
max_minibatch_per_gpu = {}, # Resolution-specific maximum minibatch size per GPU.
G_lrate_base = 0.001, # Learning rate for the generator.
G_lrate_dict = {}, # Resolution-specific overrides.
D_lrate_base = 0.001, # Learning rate for the discriminator.
D_lrate_dict = {}, # Resolution-specific overrides.
lrate_rampup_kimg = 0, # Duration of learning rate ramp-up.
tick_kimg_base = 160, # Default interval of progress snapshots.
tick_kimg_dict = {4: 160, 8:140, 16:120, 32:100, 64:80, 128:60, 256:40, 512:30, 1024:20}): # Resolution-specific overrides.
# Initialize result dict.
s = dnnlib.EasyDict()
s.kimg = cur_nimg / 1000.0
# Training phase.
phase_dur = lod_training_kimg + lod_transition_kimg
phase_idx = int(np.floor(s.kimg / phase_dur)) if phase_dur > 0 else 0
phase_kimg = s.kimg - phase_idx * phase_dur
# Level-of-detail and resolution.
s.lod = training_set.resolution_log2
s.lod -= np.floor(np.log2(lod_initial_resolution))
s.lod -= phase_idx
if lod_transition_kimg > 0:
s.lod -= max(phase_kimg - lod_training_kimg, 0.0) / lod_transition_kimg
s.lod = max(s.lod, 0.0)
s.resolution = 2 ** (training_set.resolution_log2 - int(np.floor(s.lod)))
# Minibatch size.
s.minibatch = minibatch_dict.get(s.resolution, minibatch_base)
s.minibatch -= s.minibatch % num_gpus
if s.resolution in max_minibatch_per_gpu:
s.minibatch = min(s.minibatch, max_minibatch_per_gpu[s.resolution] * num_gpus)
# Learning rate.
s.G_lrate = G_lrate_dict.get(s.resolution, G_lrate_base)
s.D_lrate = D_lrate_dict.get(s.resolution, D_lrate_base)
if lrate_rampup_kimg > 0:
rampup = min(s.kimg / lrate_rampup_kimg, 1.0)
s.G_lrate *= rampup
s.D_lrate *= rampup
# Other parameters.
s.tick_kimg = tick_kimg_dict.get(s.resolution, tick_kimg_base)
return s
#----------------------------------------------------------------------------
# Main training script.
def training_loop(
submit_config,
G_args = {}, # Options for generator network.
D_args = {}, # Options for discriminator network.
G_opt_args = {}, # Options for generator optimizer.
D_opt_args = {}, # Options for discriminator optimizer.
G_loss_args = {}, # Options for generator loss.
D_loss_args = {}, # Options for discriminator loss.
dataset_args = {}, # Options for dataset.load_dataset().
sched_args = {}, # Options for train.TrainingSchedule.
grid_args = {}, # Options for train.setup_snapshot_image_grid().
metric_arg_list = [], # Options for MetricGroup.
tf_config = {}, # Options for tflib.init_tf().
G_smoothing_kimg = 10.0, # Half-life of the running average of generator weights.
D_repeats = 1, # How many times the discriminator is trained per G iteration.
minibatch_repeats = 4, # Number of minibatches to run before adjusting training parameters.
reset_opt_for_new_lod = True, # Reset optimizer internal state (e.g. Adam moments) when new layers are introduced?
total_kimg = 15000, # Total length of the training, measured in thousands of real images.
mirror_augment = False, # Enable mirror augment?
drange_net = [-1,1], # Dynamic range used when feeding image data to the networks.
image_snapshot_ticks = 1, # How often to export image snapshots?
network_snapshot_ticks = 10, # How often to export network snapshots?
save_tf_graph = False, # Include full TensorFlow computation graph in the tfevents file?
save_weight_histograms = False, # Include weight histograms in the tfevents file?
resume_run_id = None, # Run ID or network pkl to resume training from, None = start from scratch.
resume_snapshot = None, # Snapshot index to resume training from, None = autodetect.
resume_kimg = 0.0, # Assumed training progress at the beginning. Affects reporting and training schedule.
resume_time = 0.0): # Assumed wallclock time at the beginning. Affects reporting.
# Initialize dnnlib and TensorFlow.
ctx = dnnlib.RunContext(submit_config, train)
tflib.init_tf(tf_config)
# Load training set.
training_set = dataset.load_dataset(data_dir=config.data_dir, verbose=True, **dataset_args)
# Construct networks.
with tf.device('/gpu:0'):
if resume_run_id is not None:
network_pkl = misc.locate_network_pkl(resume_run_id, resume_snapshot)
print('Loading networks from "%s"...' % network_pkl)
G, D, Gs = misc.load_pkl(network_pkl)
else:
print('Constructing networks...')
G = tflib.Network('G', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **G_args)
D = tflib.Network('D', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **D_args)
Gs = G.clone('Gs')
G.print_layers(); D.print_layers()
print('Building TensorFlow graph...')
with tf.name_scope('Inputs'), tf.device('/cpu:0'):
lod_in = tf.placeholder(tf.float32, name='lod_in', shape=[])
lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[])
minibatch_in = tf.placeholder(tf.int32, name='minibatch_in', shape=[])
minibatch_split = minibatch_in // submit_config.num_gpus
Gs_beta = 0.5 ** tf.div(tf.cast(minibatch_in, tf.float32), G_smoothing_kimg * 1000.0) if G_smoothing_kimg > 0.0 else 0.0
G_opt = tflib.Optimizer(name='TrainG', learning_rate=lrate_in, **G_opt_args)
D_opt = tflib.Optimizer(name='TrainD', learning_rate=lrate_in, **D_opt_args)
for gpu in range(submit_config.num_gpus):
with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):
G_gpu = G if gpu == 0 else G.clone(G.name + '_shadow')
D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')
lod_assign_ops = [tf.assign(G_gpu.find_var('lod'), lod_in), tf.assign(D_gpu.find_var('lod'), lod_in)]
reals, labels = training_set.get_minibatch_tf()
reals = process_reals(reals, lod_in, mirror_augment, training_set.dynamic_range, drange_net)
with tf.name_scope('G_loss'), tf.control_dependencies(lod_assign_ops):
G_loss = dnnlib.util.call_func_by_name(G=G_gpu, D=D_gpu, opt=G_opt, training_set=training_set, minibatch_size=minibatch_split, **G_loss_args)
with tf.name_scope('D_loss'), tf.control_dependencies(lod_assign_ops):
D_loss = dnnlib.util.call_func_by_name(G=G_gpu, D=D_gpu, opt=D_opt, training_set=training_set, minibatch_size=minibatch_split, reals=reals, labels=labels, **D_loss_args)
G_opt.register_gradients(tf.reduce_mean(G_loss), G_gpu.trainables)
D_opt.register_gradients(tf.reduce_mean(D_loss), D_gpu.trainables)
G_train_op = G_opt.apply_updates()
D_train_op = D_opt.apply_updates()
Gs_update_op = Gs.setup_as_moving_average_of(G, beta=Gs_beta)
with tf.device('/gpu:0'):
try:
peak_gpu_mem_op = tf.contrib.memory_stats.MaxBytesInUse()
except tf.errors.NotFoundError:
peak_gpu_mem_op = tf.constant(0)
print('Setting up snapshot image grid...')
grid_size, grid_reals, grid_labels, grid_latents = misc.setup_snapshot_image_grid(G, training_set, **grid_args)
sched = training_schedule(cur_nimg=total_kimg*1000, training_set=training_set, num_gpus=submit_config.num_gpus, **sched_args)
grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch//submit_config.num_gpus)
print('Setting up run dir...')
misc.save_image_grid(grid_reals, os.path.join(submit_config.run_dir, 'reals.png'), drange=training_set.dynamic_range, grid_size=grid_size)
misc.save_image_grid(grid_fakes, os.path.join(submit_config.run_dir, 'fakes%06d.png' % resume_kimg), drange=drange_net, grid_size=grid_size)
summary_log = tf.summary.FileWriter(submit_config.run_dir)
if save_tf_graph:
summary_log.add_graph(tf.get_default_graph())
if save_weight_histograms:
G.setup_weight_histograms(); D.setup_weight_histograms()
metrics = metric_base.MetricGroup(metric_arg_list)
print('Training...\n')
ctx.update('', cur_epoch=resume_kimg, max_epoch=total_kimg)
maintenance_time = ctx.get_last_update_interval()
cur_nimg = int(resume_kimg * 1000)
cur_tick = 0
tick_start_nimg = cur_nimg
prev_lod = -1.0
while cur_nimg < total_kimg * 1000:
if ctx.should_stop(): break
# Choose training parameters and configure training ops.
sched = training_schedule(cur_nimg=cur_nimg, training_set=training_set, num_gpus=submit_config.num_gpus, **sched_args)
training_set.configure(sched.minibatch // submit_config.num_gpus, sched.lod)
if reset_opt_for_new_lod:
if np.floor(sched.lod) != np.floor(prev_lod) or np.ceil(sched.lod) != np.ceil(prev_lod):
G_opt.reset_optimizer_state(); D_opt.reset_optimizer_state()
prev_lod = sched.lod
# Run training ops.
for _mb_repeat in range(minibatch_repeats):
for _D_repeat in range(D_repeats):
tflib.run([D_train_op, Gs_update_op], {lod_in: sched.lod, lrate_in: sched.D_lrate, minibatch_in: sched.minibatch})
cur_nimg += sched.minibatch
tflib.run([G_train_op], {lod_in: sched.lod, lrate_in: sched.G_lrate, minibatch_in: sched.minibatch})
# Perform maintenance tasks once per tick.
done = (cur_nimg >= total_kimg * 1000)
if cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done:
cur_tick += 1
tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0
tick_start_nimg = cur_nimg
tick_time = ctx.get_time_since_last_update()
total_time = ctx.get_time_since_start() + resume_time
# Report progress.
print('tick %-5d kimg %-8.1f lod %-5.2f minibatch %-4d time %-12s sec/tick %-7.1f sec/kimg %-7.2f maintenance %-6.1f gpumem %-4.1f' % (
autosummary('Progress/tick', cur_tick),
autosummary('Progress/kimg', cur_nimg / 1000.0),
autosummary('Progress/lod', sched.lod),
autosummary('Progress/minibatch', sched.minibatch),
dnnlib.util.format_time(autosummary('Timing/total_sec', total_time)),
autosummary('Timing/sec_per_tick', tick_time),
autosummary('Timing/sec_per_kimg', tick_time / tick_kimg),
autosummary('Timing/maintenance_sec', maintenance_time),
autosummary('Resources/peak_gpu_mem_gb', peak_gpu_mem_op.eval() / 2**30)))
autosummary('Timing/total_hours', total_time / (60.0 * 60.0))
autosummary('Timing/total_days', total_time / (24.0 * 60.0 * 60.0))
# Save snapshots.
if cur_tick % image_snapshot_ticks == 0 or done:
grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch//submit_config.num_gpus)
misc.save_image_grid(grid_fakes, os.path.join(submit_config.run_dir, 'fakes%06d.png' % (cur_nimg // 1000)), drange=drange_net, grid_size=grid_size)
if cur_tick % network_snapshot_ticks == 0 or done or cur_tick == 1:
pkl = os.path.join(submit_config.run_dir, 'network-snapshot-%06d.pkl' % (cur_nimg // 1000))
misc.save_pkl((G, D, Gs), pkl)
metrics.run(pkl, run_dir=submit_config.run_dir, num_gpus=submit_config.num_gpus, tf_config=tf_config)
# Update summaries and RunContext.
metrics.update_autosummaries()
tflib.autosummary.save_summaries(summary_log, cur_nimg)
ctx.update('%.2f' % sched.lod, cur_epoch=cur_nimg // 1000, max_epoch=total_kimg)
maintenance_time = ctx.get_last_update_interval() - tick_time
# Write final results.
misc.save_pkl((G, D, Gs), os.path.join(submit_config.run_dir, 'network-final.pkl'))
summary_log.close()
ctx.close()
#----------------------------------------------------------------------------
|