Spaces:
Runtime error
Runtime error
File size: 43,644 Bytes
ba5dcdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 |
# Instantiate the segmenter gadget.
# Instantiate the GAN to optimize over
# Instrument the GAN for editing and optimization.
# Read quantile stats to learn 99.9th percentile for each unit,
# and also the 0.01th percentile.
# Read the median activation conditioned on door presence.
import os, sys, numpy, torch, argparse, skimage, json, shutil
from PIL import Image
from torch.utils.data import TensorDataset
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.gridspec as gridspec
from scipy.ndimage.morphology import binary_dilation
import netdissect.zdataset
import netdissect.nethook
from netdissect.dissection import safe_dir_name
from netdissect.progress import verbose_progress, default_progress
from netdissect.progress import print_progress, desc_progress, post_progress
from netdissect.easydict import EasyDict
from netdissect.workerpool import WorkerPool, WorkerBase
from netdissect.runningstats import RunningQuantile
from netdissect.pidfile import pidfile_taken
from netdissect.modelconfig import create_instrumented_model
from netdissect.autoeval import autoimport_eval
def main():
parser = argparse.ArgumentParser(description='ACE optimization utility',
prog='python -m netdissect.aceoptimize')
parser.add_argument('--model', type=str, default=None,
help='constructor for the model to test')
parser.add_argument('--pthfile', type=str, default=None,
help='filename of .pth file for the model')
parser.add_argument('--segmenter', type=str, default=None,
help='constructor for asegmenter class')
parser.add_argument('--classname', type=str, default=None,
help='intervention classname')
parser.add_argument('--layer', type=str, default='layer4',
help='layer name')
parser.add_argument('--search_size', type=int, default=10000,
help='size of search for finding training locations')
parser.add_argument('--train_size', type=int, default=1000,
help='size of training set')
parser.add_argument('--eval_size', type=int, default=200,
help='size of eval set')
parser.add_argument('--inference_batch_size', type=int, default=10,
help='forward pass batch size')
parser.add_argument('--train_batch_size', type=int, default=2,
help='backprop pass batch size')
parser.add_argument('--train_update_freq', type=int, default=10,
help='number of batches for each training update')
parser.add_argument('--train_epochs', type=int, default=10,
help='number of epochs of training')
parser.add_argument('--l2_lambda', type=float, default=0.005,
help='l2 regularizer hyperparameter')
parser.add_argument('--eval_only', action='store_true', default=False,
help='reruns eval only on trained snapshots')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA usage')
parser.add_argument('--no-cache', action='store_true', default=False,
help='disables reading of cache')
parser.add_argument('--outdir', type=str, default=None,
help='dissection directory')
parser.add_argument('--variant', type=str, default=None,
help='experiment variant')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.backends.cudnn.benchmark = True
run_command(args)
def run_command(args):
verbose_progress(True)
progress = default_progress()
classname = args.classname # 'door'
layer = args.layer # 'layer4'
num_eval_units = 20
assert os.path.isfile(os.path.join(args.outdir, 'dissect.json')), (
"Should be a dissection directory")
if args.variant is None:
args.variant = 'ace'
if args.l2_lambda != 0.005:
args.variant = '%s_reg%g' % (args.variant, args.l2_lambda)
cachedir = os.path.join(args.outdir, safe_dir_name(layer), args.variant,
classname)
if pidfile_taken(os.path.join(cachedir, 'lock.pid'), True):
sys.exit(0)
# Take defaults for model constructor etc from dissect.json settings.
with open(os.path.join(args.outdir, 'dissect.json')) as f:
dissection = EasyDict(json.load(f))
if args.model is None:
args.model = dissection.settings.model
if args.pthfile is None:
args.pthfile = dissection.settings.pthfile
if args.segmenter is None:
args.segmenter = dissection.settings.segmenter
# Default segmenter class
if args.segmenter is None:
args.segmenter = ("netdissect.segmenter.UnifiedParsingSegmenter(" +
"segsizes=[256], segdiv='quad')")
if (not args.no_cache and
os.path.isfile(os.path.join(cachedir, 'snapshots', 'epoch-%d.npy' % (
args.train_epochs - 1))) and
os.path.isfile(os.path.join(cachedir, 'report.json'))):
print('%s already done' % cachedir)
sys.exit(0)
os.makedirs(cachedir, exist_ok=True)
# Instantiate generator
model = create_instrumented_model(args, gen=True, edit=True,
layers=[args.layer])
if model is None:
print('No model specified')
sys.exit(1)
# Instantiate segmenter
segmenter = autoimport_eval(args.segmenter)
labelnames, catname = segmenter.get_label_and_category_names()
classnum = [i for i, (n, c) in enumerate(labelnames) if n == classname][0]
num_classes = len(labelnames)
with open(os.path.join(cachedir, 'labelnames.json'), 'w') as f:
json.dump(labelnames, f, indent=1)
# Sample sets for training.
full_sample = netdissect.zdataset.z_sample_for_model(model,
args.search_size, seed=10)
second_sample = netdissect.zdataset.z_sample_for_model(model,
args.search_size, seed=11)
# Load any cached data.
cache_filename = os.path.join(cachedir, 'corpus.npz')
corpus = EasyDict()
try:
if not args.no_cache:
corpus = EasyDict({k: torch.from_numpy(v)
for k, v in numpy.load(cache_filename).items()})
except:
pass
# The steps for the computation.
compute_present_locations(args, corpus, cache_filename,
model, segmenter, classnum, full_sample)
compute_mean_present_features(args, corpus, cache_filename, model)
compute_feature_quantiles(args, corpus, cache_filename, model, full_sample)
compute_candidate_locations(args, corpus, cache_filename, model, segmenter,
classnum, second_sample)
# visualize_training_locations(args, corpus, cachedir, model)
init_ablation = initial_ablation(args, args.outdir)
scores = train_ablation(args, corpus, cache_filename,
model, segmenter, classnum, init_ablation)
summarize_scores(args, corpus, cachedir, layer, classname,
args.variant, scores)
if args.variant == 'ace':
add_ace_ranking_to_dissection(args.outdir, layer, classname, scores)
# TODO: do some evaluation.
class SaveImageWorker(WorkerBase):
def work(self, data, filename):
Image.fromarray(data).save(filename, optimize=True, quality=80)
def plot_heatmap(output_filename, data, size=256):
fig = Figure(figsize=(1, 1), dpi=size)
canvas = FigureCanvas(fig)
gs = gridspec.GridSpec(1, 1, left=0.0, right=1.0, bottom=0.0, top=1.0)
ax = fig.add_subplot(gs[0])
ax.set_axis_off()
ax.imshow(data, cmap='hot', aspect='equal', interpolation='nearest',
vmin=-1, vmax=1)
canvas.print_figure(output_filename, format='png')
def draw_heatmap(output_filename, data, size=256):
fig = Figure(figsize=(1, 1), dpi=size)
canvas = FigureCanvas(fig)
gs = gridspec.GridSpec(1, 1, left=0.0, right=1.0, bottom=0.0, top=1.0)
ax = fig.add_subplot(gs[0])
ax.set_axis_off()
ax.imshow(data, cmap='hot', aspect='equal', interpolation='nearest',
vmin=-1, vmax=1)
canvas.draw() # draw the canvas, cache the renderer
image = numpy.fromstring(canvas.tostring_rgb(), dtype='uint8').reshape(
(size, size, 3))
return image
def compute_present_locations(args, corpus, cache_filename,
model, segmenter, classnum, full_sample):
# Phase 1. Identify a set of locations where there are doorways.
# Segment the image and find featuremap pixels that maximize the number
# of doorway pixels under the featuremap pixel.
if all(k in corpus for k in ['present_indices',
'object_present_sample', 'object_present_location',
'object_location_popularity', 'weighted_mean_present_feature']):
return
progress = default_progress()
feature_shape = model.feature_shape[args.layer][2:]
num_locations = numpy.prod(feature_shape).item()
num_units = model.feature_shape[args.layer][1]
with torch.no_grad():
weighted_feature_sum = torch.zeros(num_units).cuda()
object_presence_scores = []
for [zbatch] in progress(
torch.utils.data.DataLoader(TensorDataset(full_sample),
batch_size=args.inference_batch_size, num_workers=10,
pin_memory=True),
desc="Object pool"):
zbatch = zbatch.cuda()
tensor_image = model(zbatch)
segmented_image = segmenter.segment_batch(tensor_image,
downsample=2)
mask = (segmented_image == classnum).max(1)[0]
score = torch.nn.functional.adaptive_avg_pool2d(
mask.float(), feature_shape)
object_presence_scores.append(score.cpu())
feat = model.retained_layer(args.layer)
weighted_feature_sum += (feat * score[:,None,:,:]).view(
feat.shape[0],feat.shape[1], -1).sum(2).sum(0)
object_presence_at_feature = torch.cat(object_presence_scores)
object_presence_at_image, object_location_in_image = (
object_presence_at_feature.view(args.search_size, -1).max(1))
best_presence_scores, best_presence_images = torch.sort(
-object_presence_at_image)
all_present_indices = torch.sort(
best_presence_images[:(args.train_size+args.eval_size)])[0]
corpus.present_indices = all_present_indices[:args.train_size]
corpus.object_present_sample = full_sample[corpus.present_indices]
corpus.object_present_location = object_location_in_image[
corpus.present_indices]
corpus.object_location_popularity = torch.bincount(
corpus.object_present_location,
minlength=num_locations)
corpus.weighted_mean_present_feature = (weighted_feature_sum.cpu() / (
1e-20 + object_presence_at_feature.view(-1).sum()))
corpus.eval_present_indices = all_present_indices[-args.eval_size:]
corpus.eval_present_sample = full_sample[corpus.eval_present_indices]
corpus.eval_present_location = object_location_in_image[
corpus.eval_present_indices]
if cache_filename:
numpy.savez(cache_filename, **corpus)
def compute_mean_present_features(args, corpus, cache_filename, model):
# Phase 1.5. Figure mean activations for every channel where there
# is a doorway.
if all(k in corpus for k in ['mean_present_feature']):
return
progress = default_progress()
with torch.no_grad():
total_present_feature = 0
for [zbatch, featloc] in progress(
torch.utils.data.DataLoader(TensorDataset(
corpus.object_present_sample,
corpus.object_present_location),
batch_size=args.inference_batch_size, num_workers=10,
pin_memory=True),
desc="Mean activations"):
zbatch = zbatch.cuda()
featloc = featloc.cuda()
tensor_image = model(zbatch)
feat = model.retained_layer(args.layer)
flatfeat = feat.view(feat.shape[0], feat.shape[1], -1)
sum_feature_at_obj = flatfeat[
torch.arange(feat.shape[0]).to(feat.device), :, featloc
].sum(0)
total_present_feature = total_present_feature + sum_feature_at_obj
corpus.mean_present_feature = (total_present_feature / len(
corpus.object_present_sample)).cpu()
if cache_filename:
numpy.savez(cache_filename, **corpus)
def compute_feature_quantiles(args, corpus, cache_filename, model, full_sample):
# Phase 1.6. Figure the 99% and 99.9%ile of every feature.
if all(k in corpus for k in ['feature_99', 'feature_999']):
return
progress = default_progress()
with torch.no_grad():
rq = RunningQuantile(resolution=10000) # 10x what's needed.
for [zbatch] in progress(
torch.utils.data.DataLoader(TensorDataset(full_sample),
batch_size=args.inference_batch_size, num_workers=10,
pin_memory=True),
desc="Calculating 0.999 quantile"):
zbatch = zbatch.cuda()
tensor_image = model(zbatch)
feat = model.retained_layer(args.layer)
rq.add(feat.permute(0, 2, 3, 1
).contiguous().view(-1, feat.shape[1]))
result = rq.quantiles([0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999])
corpus.feature_001 = result[:, 0].cpu()
corpus.feature_01 = result[:, 1].cpu()
corpus.feature_10 = result[:, 2].cpu()
corpus.feature_50 = result[:, 3].cpu()
corpus.feature_90 = result[:, 4].cpu()
corpus.feature_99 = result[:, 5].cpu()
corpus.feature_999 = result[:, 6].cpu()
numpy.savez(cache_filename, **corpus)
def compute_candidate_locations(args, corpus, cache_filename, model,
segmenter, classnum, second_sample):
# Phase 2. Identify a set of candidate locations for doorways.
# Place the median doorway activation in every location of an image
# and identify where it can go that doorway pixels increase.
if all(k in corpus for k in ['candidate_indices',
'candidate_sample', 'candidate_score',
'candidate_location', 'object_score_at_candidate',
'candidate_location_popularity']):
return
progress = default_progress()
feature_shape = model.feature_shape[args.layer][2:]
num_locations = numpy.prod(feature_shape).item()
with torch.no_grad():
# Simplify - just treat all locations as possible
possible_locations = numpy.arange(num_locations)
# Speed up search for locations, by weighting probed locations
# according to observed distribution.
location_weights = (corpus.object_location_popularity).double()
location_weights += (location_weights.mean()) / 10.0
location_weights = location_weights / location_weights.sum()
candidate_scores = []
object_scores = []
prng = numpy.random.RandomState(1)
for [zbatch] in progress(
torch.utils.data.DataLoader(TensorDataset(second_sample),
batch_size=args.inference_batch_size, num_workers=10,
pin_memory=True),
desc="Candidate pool"):
batch_scores = torch.zeros((len(zbatch),) + feature_shape).cuda()
flat_batch_scores = batch_scores.view(len(zbatch), -1)
zbatch = zbatch.cuda()
tensor_image = model(zbatch)
segmented_image = segmenter.segment_batch(tensor_image,
downsample=2)
mask = (segmented_image == classnum).max(1)[0]
object_score = torch.nn.functional.adaptive_avg_pool2d(
mask.float(), feature_shape)
baseline_presence = mask.float().view(mask.shape[0], -1).sum(1)
edit_mask = torch.zeros((1, 1) + feature_shape).cuda()
if '_tcm' in args.variant:
# variant: top-conditional-mean
replace_vec = (corpus.mean_present_feature
[None,:,None,None].cuda())
else: # default: weighted mean
replace_vec = (corpus.weighted_mean_present_feature
[None,:,None,None].cuda())
# Sample 10 random locations to examine.
for loc in prng.choice(possible_locations, replace=False,
p=location_weights, size=5):
edit_mask.zero_()
edit_mask.view(-1)[loc] = 1
model.edit_layer(args.layer,
ablation=edit_mask, replacement=replace_vec)
tensor_image = model(zbatch)
segmented_image = segmenter.segment_batch(tensor_image,
downsample=2)
mask = (segmented_image == classnum).max(1)[0]
modified_presence = mask.float().view(
mask.shape[0], -1).sum(1)
flat_batch_scores[:,loc] = (
modified_presence - baseline_presence)
candidate_scores.append(batch_scores.cpu())
object_scores.append(object_score.cpu())
object_scores = torch.cat(object_scores)
candidate_scores = torch.cat(candidate_scores)
# Eliminate candidates where the object is present.
candidate_scores = candidate_scores * (object_scores == 0).float()
candidate_score_at_image, candidate_location_in_image = (
candidate_scores.view(args.search_size, -1).max(1))
best_candidate_scores, best_candidate_images = torch.sort(
-candidate_score_at_image)
all_candidate_indices = torch.sort(
best_candidate_images[:(args.train_size+args.eval_size)])[0]
corpus.candidate_indices = all_candidate_indices[:args.train_size]
corpus.candidate_sample = second_sample[corpus.candidate_indices]
corpus.candidate_location = candidate_location_in_image[
corpus.candidate_indices]
corpus.candidate_score = candidate_score_at_image[
corpus.candidate_indices]
corpus.object_score_at_candidate = object_scores.view(
len(object_scores), -1)[
corpus.candidate_indices, corpus.candidate_location]
corpus.candidate_location_popularity = torch.bincount(
corpus.candidate_location,
minlength=num_locations)
corpus.eval_candidate_indices = all_candidate_indices[
-args.eval_size:]
corpus.eval_candidate_sample = second_sample[
corpus.eval_candidate_indices]
corpus.eval_candidate_location = candidate_location_in_image[
corpus.eval_candidate_indices]
numpy.savez(cache_filename, **corpus)
def visualize_training_locations(args, corpus, cachedir, model):
# Phase 2.5 Create visualizations of the corpus images.
progress = default_progress()
feature_shape = model.feature_shape[args.layer][2:]
num_locations = numpy.prod(feature_shape).item()
with torch.no_grad():
imagedir = os.path.join(cachedir, 'image')
os.makedirs(imagedir, exist_ok=True)
image_saver = WorkerPool(SaveImageWorker)
for group, group_sample, group_location, group_indices in [
('present',
corpus.object_present_sample,
corpus.object_present_location,
corpus.present_indices),
('candidate',
corpus.candidate_sample,
corpus.candidate_location,
corpus.candidate_indices)]:
for [zbatch, featloc, indices] in progress(
torch.utils.data.DataLoader(TensorDataset(
group_sample, group_location, group_indices),
batch_size=args.inference_batch_size, num_workers=10,
pin_memory=True),
desc="Visualize %s" % group):
zbatch = zbatch.cuda()
tensor_image = model(zbatch)
feature_mask = torch.zeros((len(zbatch), 1) + feature_shape)
feature_mask.view(len(zbatch), -1).scatter_(
1, featloc[:,None], 1)
feature_mask = torch.nn.functional.adaptive_max_pool2d(
feature_mask.float(), tensor_image.shape[-2:]).cuda()
yellow = torch.Tensor([1.0, 1.0, -1.0]
)[None, :, None, None].cuda()
tensor_image = tensor_image * (1 - 0.5 * feature_mask) + (
0.5 * feature_mask * yellow)
byte_image = (((tensor_image+1)/2)*255).clamp(0, 255).byte()
numpy_image = byte_image.permute(0, 2, 3, 1).cpu().numpy()
for i, index in enumerate(indices):
image_saver.add(numpy_image[i], os.path.join(imagedir,
'%s_%d.jpg' % (group, index)))
image_saver.join()
def scale_summary(scale, lownums, highnums):
value, order = (-(scale.detach())).cpu().sort(0)
lowsum = ' '.join('%d: %.3g' % (o.item(), -v.item())
for v, o in zip(value[:lownums], order[:lownums]))
highsum = ' '.join('%d: %.3g' % (o.item(), -v.item())
for v, o in zip(value[-highnums:], order[-highnums:]))
return lowsum + ' ... ' + highsum
# Phase 3. Given those two sets, now optimize a such that:
# Door pred lost if we take 0 * a at a candidate (1)
# Door pred gained If we take 99.9th activation * a at a candiate (1)
#
# ADE_au = E | on - E | off)
# = cand-frac E_cand | on + nocand-frac E_cand | on
# - door-frac E_door | off + nodoor-frac E_nodoor | off
# approx = cand-frac E_cand | on - door-frac E_door | off + K
# Each batch has both types, and minimizes
# door-frac sum(s_c) when pixel off - cand-frac sum(s_c) when pixel on
def initial_ablation(args, dissectdir):
# Load initialization from dissection, based on iou scores.
with open(os.path.join(dissectdir, 'dissect.json')) as f:
dissection = EasyDict(json.load(f))
lrec = [l for l in dissection.layers if l.layer == args.layer][0]
rrec = [r for r in lrec.rankings if r.name == '%s-iou' % args.classname
][0]
init_scores = -torch.tensor(rrec.score)
return init_scores / init_scores.max()
def ace_loss(segmenter, classnum, model, layer, high_replacement, ablation,
pbatch, ploc, cbatch, cloc, run_backward=False,
discrete_pixels=False,
discrete_units=False,
mixed_units=False,
ablation_only=False,
fullimage_measurement=False,
fullimage_ablation=False,
):
feature_shape = model.feature_shape[layer][2:]
if discrete_units: # discretize ablation to the top N units
assert discrete_units > 0
d = torch.zeros_like(ablation)
top_units = torch.topk(ablation.view(-1), discrete_units)[1]
if mixed_units:
d.view(-1)[top_units] = ablation.view(-1)[top_units]
else:
d.view(-1)[top_units] = 1
ablation = d
# First, ablate a sample of locations with positive presence
# and see how much the presence is reduced.
p_mask = torch.zeros((len(pbatch), 1) + feature_shape)
if fullimage_ablation:
p_mask[...] = 1
else:
p_mask.view(len(pbatch), -1).scatter_(1, ploc[:,None], 1)
p_mask = p_mask.cuda()
a_p_mask = (ablation * p_mask)
model.edit_layer(layer, ablation=a_p_mask, replacement=None)
tensor_images = model(pbatch.cuda())
assert model._ablation[layer] is a_p_mask
erase_effect, erased_mask = segmenter.predict_single_class(
tensor_images, classnum, downsample=2)
if discrete_pixels: # pixel loss: use mask instead of pred
erase_effect = erased_mask.float()
erase_downsampled = torch.nn.functional.adaptive_avg_pool2d(
erase_effect[:,None,:,:], feature_shape)[:,0,:,:]
if fullimage_measurement:
erase_loss = erase_downsampled.sum()
else:
erase_at_loc = erase_downsampled.view(len(erase_downsampled), -1
)[torch.arange(len(erase_downsampled)), ploc]
erase_loss = erase_at_loc.sum()
if run_backward:
erase_loss.backward()
if ablation_only:
return erase_loss
# Second, activate a sample of locations that are candidates for
# insertion and see how much the presence is increased.
c_mask = torch.zeros((len(cbatch), 1) + feature_shape)
c_mask.view(len(cbatch), -1).scatter_(1, cloc[:,None], 1)
c_mask = c_mask.cuda()
a_c_mask = (ablation * c_mask)
model.edit_layer(layer, ablation=a_c_mask, replacement=high_replacement)
tensor_images = model(cbatch.cuda())
assert model._ablation[layer] is a_c_mask
add_effect, added_mask = segmenter.predict_single_class(
tensor_images, classnum, downsample=2)
if discrete_pixels: # pixel loss: use mask instead of pred
add_effect = added_mask.float()
add_effect = -add_effect
add_downsampled = torch.nn.functional.adaptive_avg_pool2d(
add_effect[:,None,:,:], feature_shape)[:,0,:,:]
if fullimage_measurement:
add_loss = add_downsampled.mean()
else:
add_at_loc = add_downsampled.view(len(add_downsampled), -1
)[torch.arange(len(add_downsampled)), ploc]
add_loss = add_at_loc.sum()
if run_backward:
add_loss.backward()
return erase_loss + add_loss
def train_ablation(args, corpus, cachefile, model, segmenter, classnum,
initial_ablation=None):
progress = default_progress()
cachedir = os.path.dirname(cachefile)
snapdir = os.path.join(cachedir, 'snapshots')
os.makedirs(snapdir, exist_ok=True)
# high_replacement = corpus.feature_99[None,:,None,None].cuda()
if '_h99' in args.variant:
high_replacement = corpus.feature_99[None,:,None,None].cuda()
elif '_tcm' in args.variant:
# variant: top-conditional-mean
high_replacement = (
corpus.mean_present_feature[None,:,None,None].cuda())
else: # default: weighted mean
high_replacement = (
corpus.weighted_mean_present_feature[None,:,None,None].cuda())
fullimage_measurement = False
ablation_only = False
fullimage_ablation = False
if '_fim' in args.variant:
fullimage_measurement = True
elif '_fia' in args.variant:
fullimage_measurement = True
ablation_only = True
fullimage_ablation = True
high_replacement.requires_grad = False
for p in model.parameters():
p.requires_grad = False
ablation = torch.zeros(high_replacement.shape).cuda()
if initial_ablation is not None:
ablation.view(-1)[...] = initial_ablation
ablation.requires_grad = True
optimizer = torch.optim.Adam([ablation], lr=0.01)
start_epoch = 0
epoch = 0
def eval_loss_and_reg():
discrete_experiments = dict(
# dpixel=dict(discrete_pixels=True),
# dunits20=dict(discrete_units=20),
# dumix20=dict(discrete_units=20, mixed_units=True),
# dunits10=dict(discrete_units=10),
# abonly=dict(ablation_only=True),
# fimabl=dict(ablation_only=True,
# fullimage_ablation=True,
# fullimage_measurement=True),
dboth20=dict(discrete_units=20, discrete_pixels=True),
# dbothm20=dict(discrete_units=20, mixed_units=True,
# discrete_pixels=True),
# abdisc20=dict(discrete_units=20, discrete_pixels=True,
# ablation_only=True),
# abdiscm20=dict(discrete_units=20, mixed_units=True,
# discrete_pixels=True,
# ablation_only=True),
# fimadp=dict(discrete_pixels=True,
# ablation_only=True,
# fullimage_ablation=True,
# fullimage_measurement=True),
# fimadu10=dict(discrete_units=10,
# ablation_only=True,
# fullimage_ablation=True,
# fullimage_measurement=True),
# fimadb10=dict(discrete_units=10, discrete_pixels=True,
# ablation_only=True,
# fullimage_ablation=True,
# fullimage_measurement=True),
fimadbm10=dict(discrete_units=10, mixed_units=True,
discrete_pixels=True,
ablation_only=True,
fullimage_ablation=True,
fullimage_measurement=True),
# fimadu20=dict(discrete_units=20,
# ablation_only=True,
# fullimage_ablation=True,
# fullimage_measurement=True),
# fimadb20=dict(discrete_units=20, discrete_pixels=True,
# ablation_only=True,
# fullimage_ablation=True,
# fullimage_measurement=True),
fimadbm20=dict(discrete_units=20, mixed_units=True,
discrete_pixels=True,
ablation_only=True,
fullimage_ablation=True,
fullimage_measurement=True)
)
with torch.no_grad():
total_loss = 0
discrete_losses = {k: 0 for k in discrete_experiments}
for [pbatch, ploc, cbatch, cloc] in progress(
torch.utils.data.DataLoader(TensorDataset(
corpus.eval_present_sample,
corpus.eval_present_location,
corpus.eval_candidate_sample,
corpus.eval_candidate_location),
batch_size=args.inference_batch_size, num_workers=10,
shuffle=False, pin_memory=True),
desc="Eval"):
# First, put in zeros for the selected units.
# Loss is amount of remaining object.
total_loss = total_loss + ace_loss(segmenter, classnum,
model, args.layer, high_replacement, ablation,
pbatch, ploc, cbatch, cloc, run_backward=False,
ablation_only=ablation_only,
fullimage_measurement=fullimage_measurement)
for k, config in discrete_experiments.items():
discrete_losses[k] = discrete_losses[k] + ace_loss(
segmenter, classnum,
model, args.layer, high_replacement, ablation,
pbatch, ploc, cbatch, cloc, run_backward=False,
**config)
avg_loss = (total_loss / args.eval_size).item()
avg_d_losses = {k: (d / args.eval_size).item()
for k, d in discrete_losses.items()}
regularizer = (args.l2_lambda * ablation.pow(2).sum())
print_progress('Epoch %d Loss %g Regularizer %g' %
(epoch, avg_loss, regularizer))
print_progress(' '.join('%s: %g' % (k, d)
for k, d in avg_d_losses.items()))
print_progress(scale_summary(ablation.view(-1), 10, 3))
return avg_loss, regularizer, avg_d_losses
if args.eval_only:
# For eval_only, just load each snapshot and re-run validation eval
# pass on each one.
for epoch in range(-1, args.train_epochs):
snapfile = os.path.join(snapdir, 'epoch-%d.pth' % epoch)
if not os.path.exists(snapfile):
data = {}
if epoch >= 0:
print('No epoch %d' % epoch)
continue
else:
data = torch.load(snapfile)
with torch.no_grad():
ablation[...] = data['ablation'].to(ablation.device)
optimizer.load_state_dict(data['optimizer'])
avg_loss, regularizer, new_extra = eval_loss_and_reg()
# Keep old values, and update any new ones.
extra = {k: v for k, v in data.items()
if k not in ['ablation', 'optimizer', 'avg_loss']}
extra.update(new_extra)
torch.save(dict(ablation=ablation, optimizer=optimizer.state_dict(),
avg_loss=avg_loss, **extra),
os.path.join(snapdir, 'epoch-%d.pth' % epoch))
# Return loaded ablation.
return ablation.view(-1).detach().cpu().numpy()
if not args.no_cache:
for start_epoch in reversed(range(args.train_epochs)):
snapfile = os.path.join(snapdir, 'epoch-%d.pth' % start_epoch)
if os.path.exists(snapfile):
data = torch.load(snapfile)
with torch.no_grad():
ablation[...] = data['ablation'].to(ablation.device)
optimizer.load_state_dict(data['optimizer'])
start_epoch += 1
break
if start_epoch < args.train_epochs:
epoch = start_epoch - 1
avg_loss, regularizer, extra = eval_loss_and_reg()
if epoch == -1:
torch.save(dict(ablation=ablation, optimizer=optimizer.state_dict(),
avg_loss=avg_loss, **extra),
os.path.join(snapdir, 'epoch-%d.pth' % epoch))
update_size = args.train_update_freq * args.train_batch_size
for epoch in range(start_epoch, args.train_epochs):
candidate_shuffle = torch.randperm(len(corpus.candidate_sample))
train_loss = 0
for batch_num, [pbatch, ploc, cbatch, cloc] in enumerate(progress(
torch.utils.data.DataLoader(TensorDataset(
corpus.object_present_sample,
corpus.object_present_location,
corpus.candidate_sample[candidate_shuffle],
corpus.candidate_location[candidate_shuffle]),
batch_size=args.train_batch_size, num_workers=10,
shuffle=True, pin_memory=True),
desc="ACE opt epoch %d" % epoch)):
if batch_num % args.train_update_freq == 0:
optimizer.zero_grad()
# First, put in zeros for the selected units. Loss is amount
# of remaining object.
loss = ace_loss(segmenter, classnum,
model, args.layer, high_replacement, ablation,
pbatch, ploc, cbatch, cloc, run_backward=True,
ablation_only=ablation_only,
fullimage_measurement=fullimage_measurement)
with torch.no_grad():
train_loss = train_loss + loss
if (batch_num + 1) % args.train_update_freq == 0:
# Third, add some L2 loss to encourage sparsity.
regularizer = (args.l2_lambda * update_size
* ablation.pow(2).sum())
regularizer.backward()
optimizer.step()
with torch.no_grad():
ablation.clamp_(0, 1)
post_progress(l=(train_loss/update_size).item(),
r=(regularizer/update_size).item())
train_loss = 0
avg_loss, regularizer, extra = eval_loss_and_reg()
torch.save(dict(ablation=ablation, optimizer=optimizer.state_dict(),
avg_loss=avg_loss, **extra),
os.path.join(snapdir, 'epoch-%d.pth' % epoch))
numpy.save(os.path.join(snapdir, 'epoch-%d.npy' % epoch),
ablation.detach().cpu().numpy())
# The output of this phase is this set of scores.
return ablation.view(-1).detach().cpu().numpy()
def tensor_to_numpy_image_batch(tensor_image):
byte_image = (((tensor_image+1)/2)*255).clamp(0, 255).byte()
numpy_image = byte_image.permute(0, 2, 3, 1).cpu().numpy()
return numpy_image
# Phase 4: evaluation of intervention
def evaluate_ablation(args, model, segmenter, eval_sample, classnum, layer,
ordering):
total_bincount = 0
data_size = 0
progress = default_progress()
for l in model.ablation:
model.ablation[l] = None
feature_units = model.feature_shape[args.layer][1]
feature_shape = model.feature_shape[args.layer][2:]
repeats = len(ordering)
total_scores = torch.zeros(repeats + 1)
for i, batch in enumerate(progress(torch.utils.data.DataLoader(
TensorDataset(eval_sample),
batch_size=args.inference_batch_size, num_workers=10,
pin_memory=True),
desc="Evaluate interventions")):
tensor_image = model(zbatch)
segmented_image = segmenter.segment_batch(tensor_image,
downsample=2)
mask = (segmented_image == classnum).max(1)[0]
downsampled_seg = torch.nn.functional.adaptive_avg_pool2d(
mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
total_scores[0] += downsampled_seg.sum().cpu()
# Now we need to do an intervention for every location
# that had a nonzero downsampled_seg, if any.
interventions_needed = downsampled_seg.nonzero()
location_count = len(interventions_needed)
if location_count == 0:
continue
interventions_needed = interventions_needed.repeat(repeats, 1)
inter_z = batch[0][interventions_needed[:,0]].to(device)
inter_chan = torch.zeros(repeats, location_count, feature_units,
device=device)
for j, u in enumerate(ordering):
inter_chan[j:, :, u] = 1
inter_chan = inter_chan.view(len(inter_z), feature_units)
inter_loc = interventions_needed[:,1:]
scores = torch.zeros(len(inter_z))
batch_size = len(batch[0])
for j in range(0, len(inter_z), batch_size):
ibz = inter_z[j:j+batch_size]
ibl = inter_loc[j:j+batch_size].t()
imask = torch.zeros((len(ibz),) + feature_shape, device=ibz.device)
imask[(torch.arange(len(ibz)),) + tuple(ibl)] = 1
ibc = inter_chan[j:j+batch_size]
model.edit_layer(args.layer, ablation=(
imask.float()[:,None,:,:] * ibc[:,:,None,None]))
_, seg, _, _, _ = (
recovery.recover_im_seg_bc_and_features(
[ibz], model))
mask = (seg == classnum).max(1)[0]
downsampled_iseg = torch.nn.functional.adaptive_avg_pool2d(
mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
scores[j:j+batch_size] = downsampled_iseg[
(torch.arange(len(ibz)),) + tuple(ibl)]
scores = scores.view(repeats, location_count).sum(1)
total_scores[1:] += scores
return total_scores
def evaluate_interventions(args, model, segmenter, eval_sample,
classnum, layer, units):
total_bincount = 0
data_size = 0
progress = default_progress()
for l in model.ablation:
model.ablation[l] = None
feature_units = model.feature_shape[args.layer][1]
feature_shape = model.feature_shape[args.layer][2:]
repeats = len(ordering)
total_scores = torch.zeros(repeats + 1)
for i, batch in enumerate(progress(torch.utils.data.DataLoader(
TensorDataset(eval_sample),
batch_size=args.inference_batch_size, num_workers=10,
pin_memory=True),
desc="Evaluate interventions")):
tensor_image = model(zbatch)
segmented_image = segmenter.segment_batch(tensor_image,
downsample=2)
mask = (segmented_image == classnum).max(1)[0]
downsampled_seg = torch.nn.functional.adaptive_avg_pool2d(
mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
total_scores[0] += downsampled_seg.sum().cpu()
# Now we need to do an intervention for every location
# that had a nonzero downsampled_seg, if any.
interventions_needed = downsampled_seg.nonzero()
location_count = len(interventions_needed)
if location_count == 0:
continue
interventions_needed = interventions_needed.repeat(repeats, 1)
inter_z = batch[0][interventions_needed[:,0]].to(device)
inter_chan = torch.zeros(repeats, location_count, feature_units,
device=device)
for j, u in enumerate(ordering):
inter_chan[j:, :, u] = 1
inter_chan = inter_chan.view(len(inter_z), feature_units)
inter_loc = interventions_needed[:,1:]
scores = torch.zeros(len(inter_z))
batch_size = len(batch[0])
for j in range(0, len(inter_z), batch_size):
ibz = inter_z[j:j+batch_size]
ibl = inter_loc[j:j+batch_size].t()
imask = torch.zeros((len(ibz),) + feature_shape, device=ibz.device)
imask[(torch.arange(len(ibz)),) + tuple(ibl)] = 1
ibc = inter_chan[j:j+batch_size]
model.ablation[args.layer] = (
imask.float()[:,None,:,:] * ibc[:,:,None,None])
_, seg, _, _, _ = (
recovery.recover_im_seg_bc_and_features(
[ibz], model))
mask = (seg == classnum).max(1)[0]
downsampled_iseg = torch.nn.functional.adaptive_avg_pool2d(
mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
scores[j:j+batch_size] = downsampled_iseg[
(torch.arange(len(ibz)),) + tuple(ibl)]
scores = scores.view(repeats, location_count).sum(1)
total_scores[1:] += scores
return total_scores
def add_ace_ranking_to_dissection(outdir, layer, classname, total_scores):
source_filename = os.path.join(outdir, 'dissect.json')
source_filename_bak = os.path.join(outdir, 'dissect.json.bak')
# Back up the dissection (if not already backed up) before modifying
if not os.path.exists(source_filename_bak):
shutil.copy(source_filename, source_filename_bak)
with open(source_filename) as f:
dissection = EasyDict(json.load(f))
ranking_name = '%s-ace' % classname
# Remove any old ace ranking with the same name
lrec = [l for l in dissection.layers if l.layer == layer][0]
lrec.rankings = [r for r in lrec.rankings if r.name != ranking_name]
# Now convert ace scores to rankings
new_rankings = [dict(
name=ranking_name,
score=(-total_scores).flatten().tolist(),
metric='ace')]
# Prepend to list.
lrec.rankings[2:2] = new_rankings
# Replace the old dissect.json in-place
with open(source_filename, 'w') as f:
json.dump(dissection, f, indent=1)
def summarize_scores(args, corpus, cachedir, layer, classname, variant, scores):
target_filename = os.path.join(cachedir, 'summary.json')
ranking_name = '%s-%s' % (classname, variant)
# Now convert ace scores to rankings
new_rankings = [dict(
name=ranking_name,
score=(-scores).flatten().tolist(),
metric=variant)]
result = dict(layers=[dict(layer=layer, rankings=new_rankings)])
# Replace the old dissect.json in-place
with open(target_filename, 'w') as f:
json.dump(result, f, indent=1)
if __name__ == '__main__':
main()
|