MASAI / app /utils.py
DmitryRyumin's picture
Summary
257d039
raw
history blame
9.78 kB
"""
File: utils.py
Author: Dmitry Ryumin, Maxim Markitantov, Elena Ryumina, Anastasia Dvoynikova, and Alexey Karpov
Description: Utility functions.
License: MIT License
"""
import time
import torch
import os
import subprocess
import bisect
import re
import requests
from torchvision import transforms
from PIL import Image
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from pathlib import Path
from contextlib import suppress
from urllib.parse import urlparse
from contextlib import ContextDecorator
from typing import Callable
class Timer(ContextDecorator):
"""Context manager for measuring code execution time"""
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, *args):
self.end = time.time()
self.execution_time = f"{self.end - self.start:.2f} seconds"
def __str__(self):
return self.execution_time
def load_model(
model_url: str, folder_path: str, force_reload: bool = False
) -> str | None:
file_name = Path(urlparse(model_url).path).name
file_path = Path(folder_path) / file_name
if file_path.exists() and not force_reload:
return str(file_path)
with suppress(Exception), requests.get(model_url, stream=True) as response:
file_path.parent.mkdir(parents=True, exist_ok=True)
with file_path.open("wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
return str(file_path)
return None
def readetect_speech(
file_path: str,
read_audio: Callable,
get_speech_timestamps: Callable,
vad_model: torch.jit.ScriptModule,
sr: int = 16000,
) -> list[dict]:
wav = read_audio(file_path, sampling_rate=sr)
# get speech timestamps from full audio file
speech_timestamps = get_speech_timestamps(wav, vad_model, sampling_rate=sr)
return wav, speech_timestamps
def calculate_mode(series):
mode = series.mode()
return mode[0] if not mode.empty else None
def pth_processing(fp):
class PreprocessInput(torch.nn.Module):
def init(self):
super(PreprocessInput, self).init()
def forward(self, x):
x = x.to(torch.float32)
x = torch.flip(x, dims=(0,))
x[0, :, :] -= 91.4953
x[1, :, :] -= 103.8827
x[2, :, :] -= 131.0912
return x
def get_img_torch(img, target_size=(224, 224)):
transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
img = img.resize(target_size, Image.Resampling.NEAREST)
img = transform(img)
img = torch.unsqueeze(img, 0)
return img
return get_img_torch(fp)
def get_idx_frames_in_windows(
frames: list[int], window: dict, fps: int, sr: int = 16000
) -> list[list]:
frames_in_windows = [
idx
for idx, frame in enumerate(frames)
if window["start"] * fps / sr <= frame < window["end"] * fps / sr
]
return frames_in_windows
# Maxim code
def slice_audio(
start_time: float,
end_time: float,
win_max_length: float,
win_shift: float,
win_min_length: float,
) -> list[dict]:
"""Slices audio on windows
Args:
start_time (float): Start time of audio
end_time (float): End time of audio
win_max_length (float): Window max length
win_shift (float): Window shift
win_min_length (float): Window min length
Returns:
list[dict]: List of dict with timings, f.e.: {'start': 0, 'end': 12}
"""
if end_time < start_time:
return []
elif (end_time - start_time) > win_max_length:
timings = []
while start_time < end_time:
end_time_chunk = start_time + win_max_length
if end_time_chunk < end_time:
timings.append({"start": start_time, "end": end_time_chunk})
elif end_time_chunk == end_time: # if tail exact `win_max_length` seconds
timings.append({"start": start_time, "end": end_time_chunk})
break
else: # if tail less then `win_max_length` seconds
if (
end_time - start_time < win_min_length
): # if tail less then `win_min_length` seconds
break
timings.append({"start": start_time, "end": end_time})
break
start_time += win_shift
return timings
else:
return [{"start": start_time, "end": end_time}]
def convert_video_to_audio(file_path: str, sr: int = 16000) -> str:
path_save = file_path.split(".")[0] + ".wav"
if not os.path.exists(path_save):
ffmpeg_command = f"ffmpeg -y -i {file_path} -async 1 -vn -acodec pcm_s16le -ar {sr} {path_save}"
subprocess.call(ffmpeg_command, shell=True)
return path_save
def find_nearest_frames(target_frames, all_frames):
nearest_frames = []
for frame in target_frames:
pos = bisect.bisect_left(all_frames, frame)
if pos == 0:
nearest_frame = all_frames[0]
elif pos == len(all_frames):
nearest_frame = all_frames[-1]
else:
before = all_frames[pos - 1]
after = all_frames[pos]
nearest_frame = before if frame - before <= after - frame else after
nearest_frames.append(nearest_frame)
return nearest_frames
def find_intersections(
x: list[dict], y: list[dict], min_length: float = 0
) -> list[dict]:
"""Find intersections of two lists of dicts with intervals, preserving structure of `x` and adding intersection info
Args:
x (list[dict]): First list of intervals
y (list[dict]): Second list of intervals
min_length (float, optional): Minimum length of intersection. Defaults to 0.
Returns:
list[dict]: Windows with intersections, maintaining structure of `x`, and indicating intersection presence.
"""
timings = []
j = 0
for interval_x in x:
original_start = int(interval_x["start"])
original_end = int(interval_x["end"])
intersections_found = False
while j < len(y) and y[j]["end"] < original_start:
j += 1 # Skip any intervals in `y` that end before the current interval in `x` starts
# Check for all overlapping intervals in `y`
temp_j = (
j # Temporary pointer to check intersections within `y` for current `x`
)
while temp_j < len(y) and y[temp_j]["start"] <= original_end:
# Calculate the intersection between `x[i]` and `y[j]`
intersection_start = max(original_start, y[temp_j]["start"])
intersection_end = min(original_end, y[temp_j]["end"])
if (
intersection_start < intersection_end
and (intersection_end - intersection_start) >= min_length
):
timings.append(
{
"original_start": original_start,
"original_end": original_end,
"start": intersection_start,
"end": intersection_end,
"speech": True,
}
)
intersections_found = True
temp_j += 1 # Move to the next interval in `y` for further intersections
# If no intersections were found, add the interval with `intersected` set to False
if not intersections_found:
timings.append(
{
"original_start": original_start,
"original_end": original_end,
"start": None,
"end": None,
"speech": False,
}
)
return timings
# Anastasia code
class ASRModel:
def __init__(self, checkpoint_path: str, device: torch.device):
self.processor = WhisperProcessor.from_pretrained(checkpoint_path)
self.model = WhisperForConditionalGeneration.from_pretrained(
checkpoint_path
).to(device)
self.device = device
self.model.config.forced_decoder_ids = None
def __call__(
self, sample: torch.Tensor, audio_windows: dict, sr: int = 16000
) -> tuple:
texts = []
for t in range(len(audio_windows)):
input_features = self.processor(
sample[audio_windows[t]["start"] : audio_windows[t]["end"]],
sampling_rate=sr,
return_tensors="pt",
).input_features
predicted_ids = self.model.generate(input_features.to(self.device))
transcription = self.processor.batch_decode(
predicted_ids, skip_special_tokens=False
)
curr_text = re.findall(r"> ([^<>]+)", transcription[0])
if curr_text:
texts.append(curr_text)
else:
texts.appemd("")
# for drawing
input_features = self.processor(
sample, sampling_rate=sr, return_tensors="pt"
).input_features
predicted_ids = self.model.generate(input_features.to(self.device))
transcription = self.processor.batch_decode(
predicted_ids, skip_special_tokens=False
)
total_text = re.findall(r"> ([^<>]+)", transcription[0])
return texts, total_text
def convert_webm_to_mp4(input_file):
path_save = input_file.split(".")[0] + ".mp4"
if not os.path.exists(path_save):
ff_video = "ffmpeg -i {} -c:v copy -c:a aac -strict experimental {}".format(
input_file, path_save
)
subprocess.call(ff_video, shell=True)
return path_save