File size: 12,262 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Adapted from https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/datamodules/imagenet_datamodule.py
import os
from pathlib import Path
from typing import Any, List, Union, Callable, Optional

import torch
from torch.utils.data import Dataset, DataLoader, SequentialSampler
from torch.utils.data.dataloader import default_collate
from torch.utils.data.distributed import DistributedSampler

from pytorch_lightning import LightningDataModule

from torchvision import transforms
from torchvision.datasets import ImageFolder


class DictDataset(Dataset):

    def __init__(self, dataset_dict, length=None):
        """dataset_dict: dictionary mapping from index to batch

        length is used in the case of DistributedSampler: e.g. the dataset could have size 1k, but

        with 8 GPUs the dataset_dict would only have 125 items.

        """
        super().__init__()
        self.dataset_dict = dataset_dict
        self.length = length or len(self.dataset_dict)

    def __getitem__(self, index):
        return self.dataset_dict[index]

    def __len__(self):
        return self.length


# From https://github.com/PyTorchLightning/lightning-bolts/blob/2415b49a2b405693cd499e09162c89f807abbdc4/pl_bolts/transforms/dataset_normalizations.py#L10
def imagenet_normalization():
    return transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])


class ImagenetDataModule(LightningDataModule):
    """

    .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2017/08/

        Sample-of-Images-from-the-ImageNet-Dataset-used-in-the-ILSVRC-Challenge.png

        :width: 400

        :alt: Imagenet

    Specs:

        - 1000 classes

        - Each image is (3 x varies x varies) (here we default to 3 x 224 x 224)

    Imagenet train, val and test dataloaders.

    The train set is the imagenet train.

    The val set is taken from the train set with `num_imgs_per_val_class` images per class.

    For example if `num_imgs_per_val_class=2` then there will be 2,000 images in the validation set.

    The test set is the official imagenet validation set.

     Example::

        from pl_bolts.datamodules import ImagenetDataModule

        dm = ImagenetDataModule(IMAGENET_PATH)

        model = LitModel()

        Trainer().fit(model, datamodule=dm)

    """

    name = "imagenet"

    def __init__(

        self,

        data_dir: str,

        image_size: int = 224,

        train_transforms=None,

        val_transforms=None,

        test_transforms=None,

        img_dtype='float32',  # Using str since OmegaConf doesn't support non-primitive type

        cache_val_dataset=False,

        mixup: Optional[Callable] = None,

        num_aug_repeats: int = 0,

        num_workers: int = 0,

        batch_size: int = 32,

        batch_size_eval: Optional[int] = None,

        shuffle: bool = True,

        pin_memory: bool = True,

        drop_last: bool = False,

        *args: Any,

        **kwargs: Any,

    ) -> None:
        """

        Args:

            data_dir: path to the imagenet dataset file

            num_imgs_per_val_class: how many images per class for the validation set

            image_size: final image size

            num_workers: how many data workers

            batch_size: batch_size

            shuffle: If true shuffles the data every epoch

            pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before

                        returning them

            drop_last: If true drops the last incomplete batch

        """
        super().__init__(*args, **kwargs)

        self.image_size = image_size
        self.train_transforms = train_transforms
        self.val_transforms = val_transforms
        self.test_transforms = test_transforms
        assert img_dtype in ['float32', 'float16', 'bfloat16']
        self.img_dtype = torch.__getattribute__(img_dtype)
        self.cache_val_dataset = cache_val_dataset
        self.mixup = mixup
        self.num_aug_repeats = num_aug_repeats
        self.dims = (3, self.image_size, self.image_size)
        self.data_dir = Path(data_dir).expanduser()
        self.num_workers = num_workers
        self.batch_size = batch_size
        self.batch_size_eval = batch_size_eval if batch_size_eval is not None else self.batch_size
        self.shuffle = shuffle
        self.pin_memory = pin_memory
        self.drop_last = drop_last

    @property
    def num_classes(self) -> int:
        """

        Return:

            1000

        """
        return 1000

    def _verify_splits(self, data_dir: str, split: str) -> None:
        dirs = os.listdir(data_dir)

        if split not in dirs:
            raise FileNotFoundError(
                f"a {split} Imagenet split was not found in {data_dir},"
                f" make sure the folder contains a subfolder named {split}"
            )

    def prepare_data(self) -> None:
        """This method already assumes you have imagenet2012 downloaded. It validates the data using the meta.bin.

        .. warning:: Please download imagenet on your own first.

        """
        self._verify_splits(self.data_dir, "train")
        self._verify_splits(self.data_dir, "val")

    def setup(self, stage: Optional[str] = None) -> None:
        """Creates train, val, and test dataset."""
        if stage == "fit" or stage is None:
            train_transforms = (self.train_transform() if self.train_transforms is None
                                else self.train_transforms)
            val_transforms = (self.val_transform() if self.val_transforms is None
                              else self.val_transforms)
            if self.img_dtype is not torch.float32:
                assert isinstance(train_transforms, transforms.Compose)
                assert isinstance(val_transforms, transforms.Compose)
                convert_dtype = transforms.Lambda(lambda x: x.to(dtype=self.img_dtype))
                train_transforms.transforms.append(convert_dtype)
                val_transforms.transforms.append(convert_dtype)
            self.dataset_train = ImageFolder(self.data_dir / 'train', transform=train_transforms)
            self.dataset_val = ImageFolder(self.data_dir / 'val', transform=val_transforms)

        if stage == "test" or stage is None:
            test_transforms = (self.val_transform() if self.test_transforms is None
                               else self.test_transforms)
            if self.img_dtype is not torch.float32:
                assert isinstance(test_transforms, transforms.Compose)
                convert_dtype = transforms.Lambda(lambda x: x.to(dtype=self.img_dtype))
                test_transforms.transforms.append(convert_dtype)
            self.dataset_test = ImageFolder(self.data_dir / 'val', transform=test_transforms)

    def train_transform(self) -> Callable:
        """The standard imagenet transforms.

        .. code-block:: python

            transforms.Compose([

                transforms.RandomResizedCrop(self.image_size),

                transforms.RandomHorizontalFlip(),

                transforms.ToTensor(),

                transforms.Normalize(

                    mean=[0.485, 0.456, 0.406],

                    std=[0.229, 0.224, 0.225]

                ),

            ])

        """
        preprocessing = transforms.Compose(
            [
                transforms.RandomResizedCrop(self.image_size),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                imagenet_normalization(),
            ]
        )

        return preprocessing

    def val_transform(self) -> Callable:
        """The standard imagenet transforms for validation.

        .. code-block:: python

            transforms.Compose([

                transforms.Resize(self.image_size + 32),

                transforms.CenterCrop(self.image_size),

                transforms.ToTensor(),

                transforms.Normalize(

                    mean=[0.485, 0.456, 0.406],

                    std=[0.229, 0.224, 0.225]

                ),

            ])

        """

        preprocessing = transforms.Compose(
            [
                transforms.Resize(self.image_size + 32),
                transforms.CenterCrop(self.image_size),
                transforms.ToTensor(),
                imagenet_normalization(),
            ]
        )
        return preprocessing

    def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader:
        """ The train dataloader """
        if self.num_aug_repeats == 0:
            shuffle = self.shuffle
            sampler = None
        else:
            shuffle = False
            from timm.data.distributed_sampler import RepeatAugSampler
            sampler = RepeatAugSampler(self.dataset_train, num_repeats=self.num_aug_repeats)
        return self._data_loader(self.dataset_train, batch_size=self.batch_size,
                                 shuffle=shuffle, mixup=self.mixup, sampler=sampler)

    def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]:
        """ The val dataloader """
        # If using RepeatAugment, we set trainer.replace_sampler_ddp=False, so we have to
        # construct the DistributedSampler ourselves.
        if not self.cache_val_dataset:
            sampler = (DistributedSampler(self.dataset_val, shuffle=False, drop_last=self.drop_last)
                       if self.num_aug_repeats != 0 else None)
            return self._data_loader(self.dataset_val, batch_size=self.batch_size_eval,
                                     sampler=sampler)
        else:
            print('Caching val dataset')
            sampler = (SequentialSampler(self.dataset_val) if self.trainer.world_size <= 1
                       else DistributedSampler(self.dataset_val, shuffle=False,
                                               drop_last=self.drop_last))
            indices = list(iter(sampler))
            loader = DataLoader(self.dataset_val, batch_size=None, shuffle=False, sampler=sampler,
                                num_workers=self.num_workers, drop_last=self.drop_last)
            batches = list(loader)
            assert len(batches) == len(indices)
            self.dataset_val = DictDataset(dict(zip(indices, batches)),
                                           length=len(self.dataset_val))
            sampler = (DistributedSampler(self.dataset_val, shuffle=False, drop_last=self.drop_last)
                       if self.num_aug_repeats != 0 else None)
            return self._data_loader(self.dataset_val, batch_size=self.batch_size_eval,
                                     sampler=sampler)

    def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]:
        """ The test dataloader """
        sampler = (DistributedSampler(self.dataset_test, shuffle=False, drop_last=self.drop_last)
                   if self.num_aug_repeats != 0 else None)
        return self._data_loader(self.dataset_test, batch_size=self.batch_size_eval, sampler=sampler)

    def _data_loader(self, dataset: Dataset, batch_size: int, shuffle: bool = False,

                     mixup: Optional[Callable] = None, sampler=None) -> DataLoader:
        collate_fn = ((lambda batch: mixup(*default_collate(batch))) if mixup is not None
                      else default_collate)
        return DataLoader(
            dataset,
            collate_fn=collate_fn,
            batch_size=batch_size,
            shuffle=shuffle,
            sampler=sampler,
            num_workers=self.num_workers,
            drop_last=self.drop_last,
            pin_memory=self.pin_memory,
            persistent_workers=True
        )


class Imagenet21kPDataModule(ImagenetDataModule):
    """ImageNet-21k (winter 21) processed with https://github.com/Alibaba-MIIL/ImageNet21K

    """

    @property
    def num_classes(self) -> int:
        """

        Return:

            10450

        """
        return 10450