Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
import sys | |
import warnings | |
import os | |
import re | |
import ast | |
from pathlib import Path | |
from packaging.version import parse, Version | |
import platform | |
from setuptools import setup, find_packages | |
import subprocess | |
import urllib.request | |
import urllib.error | |
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel | |
import torch | |
from torch.utils.cpp_extension import ( | |
BuildExtension, | |
CppExtension, | |
CUDAExtension, | |
CUDA_HOME, | |
) | |
with open("README.md", "r", encoding="utf-8") as fh: | |
long_description = fh.read() | |
# ninja build does not work unless include_dirs are abs path | |
this_dir = os.path.dirname(os.path.abspath(__file__)) | |
PACKAGE_NAME = "flash_attn" | |
BASE_WHEEL_URL = ( | |
"https://github.com/Dao-AILab/flash-attention/releases/download/{tag_name}/{wheel_name}" | |
) | |
# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels | |
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation | |
FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE" | |
SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE" | |
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI | |
FORCE_CXX11_ABI = os.getenv("FLASH_ATTENTION_FORCE_CXX11_ABI", "FALSE") == "TRUE" | |
def get_platform(): | |
""" | |
Returns the platform name as used in wheel filenames. | |
""" | |
if sys.platform.startswith("linux"): | |
return f'linux_{platform.uname().machine}' | |
elif sys.platform == "darwin": | |
mac_version = ".".join(platform.mac_ver()[0].split(".")[:2]) | |
return f"macosx_{mac_version}_x86_64" | |
elif sys.platform == "win32": | |
return "win_amd64" | |
else: | |
raise ValueError("Unsupported platform: {}".format(sys.platform)) | |
def get_cuda_bare_metal_version(cuda_dir): | |
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) | |
output = raw_output.split() | |
release_idx = output.index("release") + 1 | |
bare_metal_version = parse(output[release_idx].split(",")[0]) | |
return raw_output, bare_metal_version | |
def check_if_cuda_home_none(global_option: str) -> None: | |
if CUDA_HOME is not None: | |
return | |
# warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary | |
# in that case. | |
warnings.warn( | |
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " | |
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " | |
"only images whose names contain 'devel' will provide nvcc." | |
) | |
def append_nvcc_threads(nvcc_extra_args): | |
nvcc_threads = os.getenv("NVCC_THREADS") or "4" | |
return nvcc_extra_args + ["--threads", nvcc_threads] | |
cmdclass = {} | |
ext_modules = [] | |
# We want this even if SKIP_CUDA_BUILD because when we run python setup.py sdist we want the .hpp | |
# files included in the source distribution, in case the user compiles from source. | |
subprocess.run(["git", "submodule", "update", "--init", "csrc/cutlass"]) | |
if not SKIP_CUDA_BUILD: | |
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) | |
TORCH_MAJOR = int(torch.__version__.split(".")[0]) | |
TORCH_MINOR = int(torch.__version__.split(".")[1]) | |
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h | |
# See https://github.com/pytorch/pytorch/pull/70650 | |
generator_flag = [] | |
torch_dir = torch.__path__[0] | |
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")): | |
generator_flag = ["-DOLD_GENERATOR_PATH"] | |
check_if_cuda_home_none("flash_attn") | |
# Check, if CUDA11 is installed for compute capability 8.0 | |
cc_flag = [] | |
if CUDA_HOME is not None: | |
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) | |
if bare_metal_version < Version("11.6"): | |
raise RuntimeError( | |
"FlashAttention is only supported on CUDA 11.6 and above. " | |
"Note: make sure nvcc has a supported version by running nvcc -V." | |
) | |
# cc_flag.append("-gencode") | |
# cc_flag.append("arch=compute_75,code=sm_75") | |
cc_flag.append("-gencode") | |
cc_flag.append("arch=compute_80,code=sm_80") | |
if CUDA_HOME is not None: | |
if bare_metal_version >= Version("11.8"): | |
cc_flag.append("-gencode") | |
cc_flag.append("arch=compute_90,code=sm_90") | |
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as | |
# torch._C._GLIBCXX_USE_CXX11_ABI | |
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920 | |
if FORCE_CXX11_ABI: | |
torch._C._GLIBCXX_USE_CXX11_ABI = True | |
ext_modules.append( | |
CUDAExtension( | |
name="flash_attn_2_cuda", | |
sources=[ | |
"csrc/flash_attn/flash_api.cpp", | |
"csrc/flash_attn/src/flash_fwd_hdim32_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim32_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim64_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim64_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim96_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim96_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim192_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim224_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim224_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim256_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_hdim256_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim224_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim224_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim224_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim224_bf16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_sm80.cu", | |
"csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_sm80.cu", | |
], | |
extra_compile_args={ | |
"cxx": ["-O3", "-std=c++17"] + generator_flag, | |
"nvcc": append_nvcc_threads( | |
[ | |
"-O3", | |
"-std=c++17", | |
"-U__CUDA_NO_HALF_OPERATORS__", | |
"-U__CUDA_NO_HALF_CONVERSIONS__", | |
"-U__CUDA_NO_HALF2_OPERATORS__", | |
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__", | |
"--expt-relaxed-constexpr", | |
"--expt-extended-lambda", | |
"--use_fast_math", | |
# "--ptxas-options=-v", | |
# "--ptxas-options=-O2", | |
# "-lineinfo", | |
# "-DFLASHATTENTION_DISABLE_BACKWARD", | |
# "-DFLASHATTENTION_DISABLE_DROPOUT", | |
# "-DFLASHATTENTION_DISABLE_ALIBI", | |
# "-DFLASHATTENTION_DISABLE_UNEVEN_K", | |
# "-DFLASHATTENTION_DISABLE_LOCAL", | |
] | |
+ generator_flag | |
+ cc_flag | |
), | |
}, | |
include_dirs=[ | |
Path(this_dir) / "csrc" / "flash_attn", | |
Path(this_dir) / "csrc" / "flash_attn" / "src", | |
Path(this_dir) / "csrc" / "cutlass" / "include", | |
], | |
) | |
) | |
def get_package_version(): | |
with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f: | |
version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE) | |
public_version = ast.literal_eval(version_match.group(1)) | |
local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION") | |
if local_version: | |
return f"{public_version}+{local_version}" | |
else: | |
return str(public_version) | |
def get_wheel_url(): | |
# Determine the version numbers that will be used to determine the correct wheel | |
# We're using the CUDA version used to build torch, not the one currently installed | |
# _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME) | |
torch_cuda_version = parse(torch.version.cuda) | |
torch_version_raw = parse(torch.__version__) | |
# For CUDA 11, we only compile for CUDA 11.8, and for CUDA 12 we only compile for CUDA 12.2 | |
# to save CI time. Minor versions should be compatible. | |
torch_cuda_version = parse("11.8") if torch_cuda_version.major == 11 else parse("12.2") | |
python_version = f"cp{sys.version_info.major}{sys.version_info.minor}" | |
platform_name = get_platform() | |
flash_version = get_package_version() | |
# cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}" | |
cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}" | |
torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}" | |
cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper() | |
# Determine wheel URL based on CUDA version, torch version, python version and OS | |
wheel_filename = f"{PACKAGE_NAME}-{flash_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl" | |
wheel_url = BASE_WHEEL_URL.format(tag_name=f"v{flash_version}", wheel_name=wheel_filename) | |
return wheel_url, wheel_filename | |
class CachedWheelsCommand(_bdist_wheel): | |
""" | |
The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot | |
find an existing wheel (which is currently the case for all flash attention installs). We use | |
the environment parameters to detect whether there is already a pre-built version of a compatible | |
wheel available and short-circuits the standard full build pipeline. | |
""" | |
def run(self): | |
if FORCE_BUILD: | |
return super().run() | |
wheel_url, wheel_filename = get_wheel_url() | |
print("Guessing wheel URL: ", wheel_url) | |
try: | |
urllib.request.urlretrieve(wheel_url, wheel_filename) | |
# Make the archive | |
# Lifted from the root wheel processing command | |
# https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85 | |
if not os.path.exists(self.dist_dir): | |
os.makedirs(self.dist_dir) | |
impl_tag, abi_tag, plat_tag = self.get_tag() | |
archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}" | |
wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl") | |
print("Raw wheel path", wheel_path) | |
os.rename(wheel_filename, wheel_path) | |
except (urllib.error.HTTPError, urllib.error.URLError): | |
print("Precompiled wheel not found. Building from source...") | |
# If the wheel could not be downloaded, build from source | |
super().run() | |
class NinjaBuildExtension(BuildExtension): | |
def __init__(self, *args, **kwargs) -> None: | |
# do not override env MAX_JOBS if already exists | |
if not os.environ.get("MAX_JOBS"): | |
import psutil | |
# calculate the maximum allowed NUM_JOBS based on cores | |
max_num_jobs_cores = max(1, os.cpu_count() // 2) | |
# calculate the maximum allowed NUM_JOBS based on free memory | |
free_memory_gb = psutil.virtual_memory().available / (1024 ** 3) # free memory in GB | |
max_num_jobs_memory = int(free_memory_gb / 9) # each JOB peak memory cost is ~8-9GB when threads = 4 | |
# pick lower value of jobs based on cores vs memory metric to minimize oom and swap usage during compilation | |
max_jobs = max(1, min(max_num_jobs_cores, max_num_jobs_memory)) | |
os.environ["MAX_JOBS"] = str(max_jobs) | |
super().__init__(*args, **kwargs) | |
setup( | |
name=PACKAGE_NAME, | |
version=get_package_version(), | |
packages=find_packages( | |
exclude=( | |
"build", | |
"csrc", | |
"include", | |
"tests", | |
"dist", | |
"docs", | |
"benchmarks", | |
"flash_attn.egg-info", | |
) | |
), | |
author="Tri Dao", | |
author_email="[email protected]", | |
description="Flash Attention: Fast and Memory-Efficient Exact Attention", | |
long_description=long_description, | |
long_description_content_type="text/markdown", | |
url="https://github.com/Dao-AILab/flash-attention", | |
classifiers=[ | |
"Programming Language :: Python :: 3", | |
"License :: OSI Approved :: BSD License", | |
"Operating System :: Unix", | |
], | |
ext_modules=ext_modules, | |
cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": NinjaBuildExtension} | |
if ext_modules | |
else { | |
"bdist_wheel": CachedWheelsCommand, | |
}, | |
python_requires=">=3.7", | |
install_requires=[ | |
"torch", | |
"einops", | |
], | |
setup_requires=[ | |
"packaging", | |
"psutil", | |
"ninja", | |
], | |
) | |