Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
import math
from functools import partial
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.utils import _pair
import hydra
from einops import reduce, rearrange
def pooling(x, pooling_mode='CLS', key_padding_mask=None, batch_first=True):
if pooling_mode not in ['MEAN', 'SUM', 'CLS', 'LAST', 'FLATTEN']:
raise NotImplementedError(f'pooling_mode must be MEAN, SUM, CLS, LAST, FLATTEN')
if pooling_mode in ['MEAN', 'SUM']:
if key_padding_mask is not None:
mask = rearrange(~key_padding_mask.bool_matrix,
'b s -> b s 1' if batch_first else 'b s -> s b 1')
x = x.masked_fill(mask, 0)
s = reduce(x, 'b s ... -> b ...' if batch_first else 's b ... -> b ...', 'sum')
if pooling_mode == 'SUM':
return s
else:
if key_padding_mask is None:
return s / x.shape[1 if batch_first else 0]
else:
lengths = rearrange(key_padding_mask._lengths, 'b -> b 1')
return s / lengths
elif pooling_mode == 'CLS':
return x[:, 0] if batch_first else x[0]
elif pooling_mode == 'LAST':
if key_padding_mask is None:
return x[:, -1] if batch_first else x[-1]
else:
lengths = key_padding_mask._lengths
if batch_first:
batch_size = x.shape[0]
return x[torch.arange(batch_size, device=x.device), lengths - 1]
else:
batch_size = x.shape[1]
return x[lengths - 1, torch.arange(batch_size, device=x.device)]
elif pooling_mode == 'FLATTEN':
return rearrange(x, 'b ... -> b (...)' if batch_first else 's b ... -> b (s ...)')
class ClassificationHeadLinear(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, d_model, num_classes, pooling_mode='MEAN',
batch_first=False, **kwargs):
super().__init__()
assert pooling_mode in ['MEAN', 'SUM', 'CLS', 'LAST', 'FLATTEN'], 'pooling_mode not supported'
self.pooling_mode = pooling_mode
self.batch_first = batch_first
self.out_proj = nn.Linear(d_model, num_classes)
def forward(self, hidden_states, key_padding_mask=None, **kwargs):
"""
hidden_states: (B, S, D) if batch_first else (S, B, D)
"""
hidden_states = pooling(hidden_states, pooling_mode=self.pooling_mode,
key_padding_mask=key_padding_mask, batch_first=self.batch_first)
hidden_states = self.out_proj(hidden_states)
return hidden_states
# Adapted from https://github.com/huggingface/transformers/blob/master/src/transformers/models/reformer/modeling_reformer.py
class ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, d_model, d_inner, num_classes, dropout=0.0, pooling_mode='MEAN',
batch_first=False):
super().__init__()
assert pooling_mode in ['MEAN', 'SUM', 'CLS', 'LAST', 'FLATTEN'], 'pooling_mode not supported'
self.pooling_mode = pooling_mode
self.batch_first = batch_first
self.dense = nn.Linear(d_model, d_inner)
self.dropout = nn.Dropout(dropout)
self.out_proj = nn.Linear(d_inner, num_classes)
def forward(self, hidden_states, key_padding_mask=None, **kwargs):
"""
hidden_states: (B, S, D) if batch_first else (S, B, D)
"""
hidden_states = pooling(hidden_states, pooling_mode=self.pooling_mode,
key_padding_mask=key_padding_mask, batch_first=self.batch_first)
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
# Huggingface uses tanh instead of relu
hidden_states = torch.relu(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class ClassificationHeadDual(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, d_model, d_inner, num_classes, dropout=0.0, pooling_mode='MEAN',
batch_first=False, interaction='NLI'):
super().__init__()
assert pooling_mode in ['MEAN', 'SUM', 'CLS'], 'pooling_mode not supported'
assert interaction in [None, 'NLI'], 'interaction not supported'
self.pooling_mode = pooling_mode
self.batch_first = batch_first
self.interaction = interaction
self.dense = nn.Linear(d_model * (4 if self.interaction == 'NLI' else 2), d_inner)
self.dropout = nn.Dropout(dropout)
self.out_proj = nn.Linear(d_inner, num_classes)
def forward(self, hidden_states1, hidden_states2,
key_padding_mask1=None, key_padding_mask2=None, **kwargs):
"""
hidden_states: (B, S, D) if batch_first else (S, B, D)
"""
x1 = pooling(hidden_states1, pooling_mode=self.pooling_mode,
key_padding_mask=key_padding_mask1, batch_first=self.batch_first)
x2 = pooling(hidden_states2, pooling_mode=self.pooling_mode,
key_padding_mask=key_padding_mask2, batch_first=self.batch_first)
hidden_states = (torch.cat([x1, x2, x1 * x2, x1 - x2], dim=-1) if self.interaction == 'NLI'
else torch.cat([x1, x2], dim=-1))
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
# Huggingface uses tanh instead of relu
hidden_states = torch.relu(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class LMHead(nn.Module):
def __init__(self, d_model, num_classes, batch_first=True, bias=True):
super().__init__()
self.lm_head = nn.Linear(d_model, num_classes, bias=bias)
def forward(self, hidden_states, **kwargs):
"""
hidden_states: (B, S, D) if batch_first else (S, B, D)
"""
CausalLMOutput = namedtuple('CausalLMOutput', ['logits'])
return CausalLMOutput(self.lm_head(hidden_states))
def sinusoidal_init_(tensor):
"""
tensor: (max_len, d_model)
"""
max_len, d_model = tensor.shape
position = rearrange(torch.arange(0.0, max_len), 's -> s 1')
div_term = torch.exp(-math.log(10000.0) * torch.arange(0.0, d_model, 2.0) / d_model)
tensor[:, 0::2] = torch.sin(position * div_term)
tensor[:, 1::2] = torch.cos(position * div_term)
return tensor
# Adapted from https://github.com/pytorch/examples/blob/master/word_language_model/model.py
class PositionalEncoding(nn.Module):
r"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, d_model, dropout=0.1, max_len=5000, batch_first=False, initializer=None):
super().__init__()
self.batch_first = batch_first
self.dropout = nn.Dropout(p=dropout)
pe = torch.empty(max_len, d_model)
if initializer is None:
sinusoidal_init_(pe)
pe = rearrange(pe, 's d -> 1 s d' if self.batch_first else 's d -> s 1 d')
self.register_buffer('pe', pe)
else:
hydra.utils.call(initializer, pe)
pe = rearrange(pe, 's d -> 1 s d' if self.batch_first else 's d -> s 1 d')
self.pe = nn.Parameter(pe)
def forward(self, x):
r"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim] if not batch_first else [B, S, D]
output: [sequence length, batch size, embed dim] if not batch_first else [B, S, D]
Examples:
>>> output = pos_encoder(x)
"""
x = x + (self.pe[:, :x.size(1)] if self.batch_first else self.pe[:x.size(0)])
return self.dropout(x)
# Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
act_fn=None, drop=0., device=None, dtype=None):
"""TD [2021-10-27] act_fn takes precedence over act_layer if set.
This is to support Pytorch 1.10 Transformer interface that construct the activation
*function*, not the activation *layer*.
"""
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
drop_probs = _pair(drop)
self.fc1 = nn.Linear(in_features, hidden_features, **factory_kwargs)
self.act = act_layer() if act_fn is None else act_fn
self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = nn.Linear(hidden_features, out_features, **factory_kwargs)
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class MlpBig(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
act_fn=None, drop=0., device=None, dtype=None):
"""Copied from Mlp above. If num_layers > 2, add more Mlp layers, doubling each time.
"""
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
cur_hidden_features = hidden_features
layers = []
for _ in range(4):
layers.append(nn.Linear(in_features, cur_hidden_features, **factory_kwargs))
layers.append(act_layer())
layers.append(nn.Dropout(drop))
in_features = cur_hidden_features
cur_hidden_features *= 2
layers.append(nn.Linear(in_features, out_features, **factory_kwargs))
layers.append(nn.Dropout(drop))
self.fwd = nn.Sequential(*layers)
def forward(self, x):
return self.fwd(x)
class GluMlp(nn.Module):
""" MLP w/ GLU style gating
See: https://arxiv.org/abs/1612.08083, https://arxiv.org/abs/2002.05202
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.Sigmoid, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
assert hidden_features % 2 == 0
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features // 2, out_features)
self.drop = nn.Dropout(drop)
def init_weights(self):
# override init of fc1 w/ gate portion set to weight near zero, bias=1
fc1_mid = self.fc1.bias.shape[0] // 2
nn.init.ones_(self.fc1.bias[fc1_mid:])
nn.init.normal_(self.fc1.weight[fc1_mid:], std=1e-6)
def forward(self, x):
x = self.fc1(x)
x, gates = x.chunk(2, dim=-1)
x = x * self.act(gates)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class GatedMlp(nn.Module):
""" MLP as used in gMLP
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
gate_layer=None, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
if gate_layer is not None:
assert hidden_features % 2 == 0
self.gate = gate_layer(hidden_features)
hidden_features = hidden_features // 2 # FIXME base reduction on gate property?
else:
self.gate = nn.Identity()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.gate(x)
x = self.fc2(x)
x = self.drop(x)
return x
class ConvMlp(nn.Module):
""" MLP using 1x1 convs that keeps spatial dims
"""
def __init__(
self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, norm_layer=None, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=True)
self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=True)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.norm(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
return x