Spaces:
Sleeping
Sleeping
import inspect | |
import torch.nn as nn | |
import hydra | |
try: | |
from apex.contrib.layer_norm import FastLayerNorm | |
except ImportError: | |
FastLayerNorm = None | |
from src.models.modules.seq_common import PositionalEncoding | |
def group_parameters_for_optimizer(model, optimizer_cfg, bias_weight_decay=False, | |
normalization_weight_decay=False): | |
"""Set weight_decay=0.0 for parameters in model.no_weight_decay, for parameters with | |
attribute _no_weight_decay==True, for bias parameters if bias_weight_decay==False, for | |
normalization parameters if normalization_weight_decay==False | |
""" | |
# Get the weight decay from the config, or from the default value of the optimizer constructor | |
# if it's not specified in the config. | |
if 'weight_decay' in optimizer_cfg: | |
weight_decay = optimizer_cfg.weight_decay | |
else: | |
# https://stackoverflow.com/questions/12627118/get-a-function-arguments-default-value | |
signature = inspect.signature(hydra.utils.get_class(optimizer_cfg._target_)) | |
if 'weight_decay' in signature.parameters: | |
weight_decay = signature.parameters['weight_decay'].default | |
if weight_decay is inspect.Parameter.empty: | |
weight_decay = 0.0 | |
else: | |
weight_decay = 0.0 | |
# If none of the parameters have weight decay anyway, and there are no parameters with special | |
# optimization params | |
if weight_decay == 0.0 and not any(hasattr(p, '_optim') for p in model.parameters()): | |
return model.parameters() | |
skip = model.no_weight_decay() if hasattr(model, 'no_weight_decay') else set() | |
skip_keywords = (model.no_weight_decay_keywords() if hasattr(model, 'no_weight_decay_keywords') | |
else set()) | |
# Adapted from https://github.com/karpathy/minGPT/blob/master/mingpt/model.py#L134 | |
""" | |
This long function is unfortunately doing something very simple and is being very defensive: | |
We are separating out all parameters of the model into two buckets: those that will experience | |
weight decay for regularization and those that won't (biases, and layernorm/embedding weights). | |
We are then returning the PyTorch optimizer object. | |
""" | |
# separate out all parameters to those that will and won't experience regularizing weight decay | |
decay = set() | |
no_decay = set() | |
special = set() | |
whitelist_weight_modules = (nn.Linear, ) | |
blacklist_weight_modules = (nn.Embedding, PositionalEncoding) | |
if not normalization_weight_decay: | |
blacklist_weight_modules += (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, | |
nn.LazyBatchNorm1d, nn.LazyBatchNorm2d, nn.LazyBatchNorm3d, | |
nn.GroupNorm, nn.SyncBatchNorm, | |
nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, | |
nn.LayerNorm, nn.LocalResponseNorm) | |
if FastLayerNorm is not None: | |
blacklist_weight_modules += (FastLayerNorm,) | |
param_dict = {pn: p for pn, p in model.named_parameters() if p.requires_grad} | |
for mn, m in model.named_modules(): | |
for pn, p in m.named_parameters(): | |
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name | |
# In case of parameter sharing, some parameters show up here but are not in | |
# param_dict.keys() | |
if not p.requires_grad or fpn not in param_dict: | |
continue # frozen weights | |
if hasattr(p, '_optim'): | |
special.add(fpn) | |
elif fpn in skip or any(skip_keyword in fpn for skip_keyword in skip_keywords): | |
no_decay.add(fpn) | |
elif getattr(p, '_no_weight_decay', False): | |
no_decay.add(fpn) | |
elif not bias_weight_decay and pn.endswith('bias'): | |
no_decay.add(fpn) | |
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): | |
# weights of whitelist modules will be weight decayed | |
decay.add(fpn) | |
elif isinstance(m, blacklist_weight_modules): | |
# weights of blacklist modules will NOT be weight decayed | |
no_decay.add(fpn) | |
decay |= (param_dict.keys() - no_decay - special) | |
# validate that we considered every parameter | |
inter_params = decay & no_decay | |
union_params = decay | no_decay | |
assert len(inter_params) == 0, f"Parameters {str(inter_params)} made it into both decay/no_decay sets!" | |
assert len(param_dict.keys() - special - union_params) == 0, f"parameters {str(param_dict.keys() - union_params)} were not separated into either decay/no_decay set!" | |
if weight_decay == 0.0 or not no_decay: | |
param_groups = [{"params": [param_dict[pn] for pn in sorted(list(no_decay | decay))], | |
"weight_decay": weight_decay}] | |
else: | |
# We need sorted(list()) so that the order is deterministic. Otherwise when we resume | |
# the order could change and resume will fail. [H/t Albert] | |
param_groups = [ | |
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay}, | |
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, | |
] | |
# Add parameters with special hyperparameters | |
# Unique dicts | |
hps = [dict(s) for s in set(frozenset(param_dict[pn]._optim.items()) for pn in special)] | |
for hp in hps: | |
params = [param_dict[pn] for pn in sorted(list(special)) if param_dict[pn]._optim == hp] | |
param_groups.append({"params": params, **hp}) | |
return param_groups | |