Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
from typing import Any, List
import inspect
import torch
import hydra
from pytorch_lightning import LightningModule, LightningDataModule
from torchmetrics import MetricCollection
from einops import rearrange
from omegaconf import OmegaConf
from src.utils.utils import get_logger
from src.optim.param_grouping import group_parameters_for_optimizer
from src.utils.checkpoint import load_checkpoint
logger = get_logger(__name__)
class SequenceModel(LightningModule):
def __init__(self, cfg, model_cfg=None):
"""If model_cfg is passed, it will take precedence over cfg.model
"""
super().__init__()
# this line ensures params passed to LightningModule will be saved to ckpt
# it also allows to access params with 'self.hparams' attribute
self.save_hyperparameters(cfg)
self.cfg = cfg
self.model_cfg = model_cfg or self.cfg.model
self.instantiate_datamodule()
self.instantiate_model()
self.warmstart()
self.instantiate_loss()
self.instantiate_metrics()
def instantiate_datamodule(self):
logger.info(f"Instantiating datamodule <{self.cfg.datamodule._target_}>")
# Calling this self.datamodule will mess with PL since it also assigns self.datamodule
self._datamodule: LightningDataModule = hydra.utils.instantiate(self.cfg.datamodule)
self._datamodule.prepare_data()
self._datamodule.setup()
OmegaConf.clear_resolver('datamodule')
OmegaConf.register_new_resolver('datamodule', lambda attr: getattr(self._datamodule, attr))
def instantiate_model(self):
# if hasattr(self._datamodule, 'num_classes'):
# self.model_cfg.num_classes = self._datamodule.num_classes
# if (hasattr(self._datamodule, 'vocab_size')
# and self.model_cfg.get('embedding_cfg', None) is not None
# and self.model_cfg.embedding_cfg._target_ == "torch.nn.Embedding"):
# self.model_cfg.embedding_cfg.num_embeddings = self._datamodule.vocab_size
logger.info(f"Instantiating model <{self.model_cfg._target_}>")
recursive = getattr(self.model_cfg, '_recursive_', False)
self.model = hydra.utils.instantiate(self.model_cfg, _recursive_=recursive)
def instantiate_loss(self):
loss_fn_cfg = self.cfg.train.get('loss_fn')
if loss_fn_cfg is None:
loss_fn_cfg = {'_target_': 'torch.nn.CrossEntropyLoss'}
self.loss_fn = hydra.utils.instantiate(loss_fn_cfg)
loss_fn_val_cfg = self.cfg.train.get('loss_fn_val', loss_fn_cfg)
self.loss_fn_val = hydra.utils.instantiate(loss_fn_val_cfg)
def instantiate_metrics(self):
# use separate metric instance for train, val and test step
# to ensure a proper reduction over the epoch
if 'eval' in self.cfg and 'metrics' in self.cfg.eval:
metrics_cfg = self.cfg.eval.metrics
else:
metrics_cfg = {'acc': {'_target_': 'torchmetrics.Accuracy'}}
metrics = MetricCollection({name: hydra.utils.instantiate(cfg)
for name, cfg in metrics_cfg.items()})
self.train_metrics = metrics.clone(prefix='train/')
self.val_metrics = metrics.clone(prefix='val/')
self.test_metrics = metrics.clone(prefix='test/')
def warmstart(self):
if self.cfg.train.get('warmstart', None) is not None:
logger.info(f"Warm-starting with weights from {self.cfg.train.warmstart.path}")
strict = self.cfg.train.warmstart.get('strict', True)
state_dict = load_checkpoint(self.cfg.train.warmstart.path)
if self.cfg.train.warmstart.get('post_process', None) is not None:
state_dict = hydra.utils.instantiate(self.cfg.train.warmstart.post_process,
state_dict)
load_return = self.model.load_state_dict(state_dict, strict=False)
logger.info(load_return)
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
def step(self, batch: Any, is_train=True):
try:
x, y, lengths = batch
except ValueError:
x, y = batch
lengths = None
output = self.forward(x) if lengths is None else self.forward(x, lengths=lengths)
loss = self.loss_fn(output, y) if is_train else self.loss_fn_val(output, y)
return loss, output, y
def shared_step(self, batch: Any, batch_idx: int, phase='train'):
loss, output, targets = self.step(batch, is_train=(phase == 'train'))
metrics = getattr(self, f'{phase}_metrics')
metrics(output, targets)
log_on_step = 'eval' in self.cfg and self.cfg.eval.get('log_on_step', False) and phase == 'train'
self.log(f"{phase}/loss", loss, on_step=log_on_step, on_epoch=True,
prog_bar=False, sync_dist=True)
# https://pytorch-lightning.readthedocs.io/en/stable/visualize/logging_advanced.html#enable-metrics-for-distributed-training
# We need to log the Metrics object, not the metric result, since otherwise
# pytorch-lightning will use torch.mean to reduce it.
# This would be wrong for perplexity, for example.
self.log_dict(metrics, on_step=log_on_step, on_epoch=True, prog_bar=True, sync_dist=True)
return {"loss": loss, "output": output, "targets": targets}
def training_step(self, batch: Any, batch_idx: int):
return self.shared_step(batch, batch_idx, phase='train')
def validation_step(self, batch: Any, batch_idx: int):
return self.shared_step(batch, batch_idx, phase='val')
def test_step(self, batch: Any, batch_idx: int):
return self.shared_step(batch, batch_idx, phase='test')
def configure_optimizers(self):
if 'optimizer_param_grouping' in self.cfg.train: # Set zero weight decay for some params
parameters = group_parameters_for_optimizer(self.model, self.cfg.train.optimizer,
**self.cfg.train.optimizer_param_grouping)
else:
# parameters = self.model.parameters()
parameters = self.parameters() # [21-09-08] AG: this will train task specific parameters such as Retrieval head for AAN
optimizer = hydra.utils.instantiate(self.cfg.train.optimizer, parameters)
# Log optimizer info
for i, g in enumerate(optimizer.param_groups):
ntensors = len(g['params'])
nparams = sum(p.numel() for p in g['params'])
hparams = {k: v for k, v in g.items() if k != 'params'}
logger.info(f'Optimizer group {i}: {ntensors} tensors, {nparams} parameters, {hparams}')
if 'scheduler' not in self.cfg.train:
return optimizer
else:
# lr_scheduler should be called either every step (default) or every epoch
lr_scheduler = hydra.utils.instantiate(self.cfg.train.scheduler, optimizer)
return [optimizer], {'scheduler': lr_scheduler,
'interval': self.cfg.train.get('scheduler_interval', 'step'),
'monitor': self.cfg.train.get('scheduler_monitor', 'val/loss')}
def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx):
# https://pytorch-lightning.readthedocs.io/en/latest/guides/speed.html#set-grads-to-none
# TD [2022-04-30]: DeepSpeed optimizer uses the kwarg set_grad_to_none instead of set_to_none
if 'set_to_none' in inspect.signature(optimizer.zero_grad).parameters:
optimizer.zero_grad(set_to_none=True)
else:
optimizer.zero_grad()
def on_save_checkpoint(self, checkpoint):
# TD [2022-08-07] ['epoch_loop.batch_progress']['total']['completed'] is 1 iteration
# behind, so we're using the optimizer's progress.
checkpoint['loops']['fit_loop']['epoch_loop.batch_progress']['total']['completed'] = checkpoint['loops']['fit_loop']['epoch_loop.batch_loop.optimizer_loop.optim_progress']['optimizer']['step']['total']['completed'] * self.trainer.accumulate_grad_batches
checkpoint['loops']['fit_loop']['epoch_loop.batch_progress']['current']['completed'] = checkpoint['loops']['fit_loop']['epoch_loop.batch_loop.optimizer_loop.optim_progress']['optimizer']['step']['current']['completed'] * self.trainer.accumulate_grad_batches
# _batches_that_stepped tracks the number of global steps, not the number
# of local steps, so we don't multiply with self.trainer.accumulate_grad_batches here.
checkpoint['loops']['fit_loop']['epoch_loop.state_dict']['_batches_that_stepped'] = checkpoint['loops']['fit_loop']['epoch_loop.batch_loop.optimizer_loop.optim_progress']['optimizer']['step']['total']['completed']
class SequenceLMModel(SequenceModel):
def step(self, batch: Any, is_train=True):
x, y = batch
output = self.forward(x).logits
output = rearrange(output, '... C -> (...) C')
y = rearrange(y, '... -> (...)')
loss = self.loss_fn(output, y) if is_train else self.loss_fn_val(output, y)
return loss, output, y
def shared_step(self, batch: Any, batch_idx: int, phase='train'):
loss, output, targets = self.step(batch, is_train=(phase == 'train'))
# Passing the loss to the perplexity metrics to avoid recomputation
metrics = getattr(self, f'{phase}_metrics')
metrics(output, targets, loss=loss)
log_on_step = 'eval' in self.cfg and self.cfg.eval.get('log_on_step', False) and phase == 'train'
self.log(f"{phase}/loss", loss, on_step=log_on_step, on_epoch=True,
prog_bar=False, sync_dist=True)
# https://pytorch-lightning.readthedocs.io/en/stable/visualize/logging_advanced.html#enable-metrics-for-distributed-training
# We need to log the Metrics object, not the metric result, since otherwise
# pytorch-lightning will use torch.mean to reduce it.
# This would be wrong for perplexity, for example.
self.log_dict(metrics, on_step=log_on_step, on_epoch=True, prog_bar=True, sync_dist=True)
return {"loss": loss, "output": output, "targets": targets}