# Adapted from https://github.com/Lightning-AI/lightning/blob/master/src/pytorch_lightning/callbacks/lr_monitor.py. from typing import Any from pytorch_lightning import Callback, Trainer from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.strategies import DeepSpeedStrategy class LossScaleMonitor(Callback): """Monitor the loss scale for AMP (fp16). """ # Use on_before_optimizer_step instead of on_train_batch_start since there might be # gradient accumulation and we only care about the loss scale when it could change (i.e., # optimizer.step). @rank_zero_only def on_before_optimizer_step(self, trainer: Trainer, *args: Any, **kwargs: Any) -> None: if not trainer._logger_connector.should_update_logs: return stats = {} if isinstance(trainer.strategy, DeepSpeedStrategy): stats = {'scalar/scale': trainer.model.optimizer.loss_scale} if hasattr(trainer, 'precision_plugin') and hasattr(trainer.precision_plugin, 'scaler'): scaler = trainer.precision_plugin.scaler if scaler is not None: stats = { 'scaler/scale': scaler.get_scale(), 'scaler/growth_tracker': scaler._get_growth_tracker(), } if stats and trainer.loggers is not None: for logger in trainer.loggers: logger.log_metrics(stats, step=trainer.fit_loop.epoch_loop._batches_that_stepped)