import gradio as gr import pandas as pd # Define the columns for the UGI Leaderboard UGI_COLS = [ '#P', 'Model', 'UGI 🏆', 'W/10 👍', 'Unruly', 'Internet', 'CrimeStats', 'Stories/Jokes', 'PolContro' ] # Load the leaderboard data from a CSV file def load_leaderboard_data(csv_file_path): try: df = pd.read_csv(csv_file_path) # Create hyperlinks in the Model column using HTML tags with inline CSS for styling df['Model'] = df.apply(lambda row: f'{row["Model"]}' if pd.notna(row["Link"]) else row["Model"], axis=1) # Drop the 'Link' column as it's no longer needed df.drop(columns=['Link'], inplace=True) return df except Exception as e: print(f"Error loading CSV file: {e}") return pd.DataFrame(columns=UGI_COLS) # Return an empty dataframe with the correct columns # Update the leaderboard table based on the search query and parameter range filters def update_table(df: pd.DataFrame, query: str, param_ranges: list) -> pd.DataFrame: filtered_df = df if any(param_ranges): conditions = [] for param_range in param_ranges: if param_range == '~1.5': conditions.append((filtered_df['Params'] < 2.5)) elif param_range == '~3': conditions.append(((filtered_df['Params'] >= 2.5) & (filtered_df['Params'] < 6))) elif param_range == '~7': conditions.append(((filtered_df['Params'] >= 6) & (filtered_df['Params'] < 9.5))) elif param_range == '~13': conditions.append(((filtered_df['Params'] >= 9.5) & (filtered_df['Params'] < 16))) elif param_range == '~20': conditions.append(((filtered_df['Params'] >= 16) & (filtered_df['Params'] < 28))) elif param_range == '~34': conditions.append(((filtered_df['Params'] >= 28) & (filtered_df['Params'] < 40))) elif param_range == '~50': conditions.append(((filtered_df['Params'] >= 40) & (filtered_df['Params'] < 65))) elif param_range == '~70+': conditions.append((filtered_df['Params'] >= 65)) if conditions: filtered_df = filtered_df[pd.concat(conditions, axis=1).any(axis=1)] if query: filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False)] return filtered_df[UGI_COLS] # Return only the columns defined in UGI_COLS # Define the Gradio interface GraInter = gr.Blocks() with GraInter: gr.HTML("""
""") with gr.Column(): with gr.Row(): search_bar = gr.Textbox(placeholder=" 🔍 Search for a model...", show_label=False, elem_id="search-bar") with gr.Row(): filter_columns_size = gr.CheckboxGroup( label="Model sizes (in billions of parameters)", choices=['~1.5', '~3', '~7', '~13', '~20', '~34', '~50', '~70+'], value=[], # Set the default value to an empty list interactive=True, elem_id="filter-columns-size", ) # Load the initial leaderboard data leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv") # Define the datatypes for each column, setting 'Model' column to 'html' datatypes = ['html' if col == 'Model' else 'str' for col in UGI_COLS] leaderboard_table = gr.Dataframe( value=leaderboard_df[UGI_COLS], datatype=datatypes, # Specify the datatype for each column interactive=False, # Set to False to make the leaderboard non-editable visible=True, elem_classes="text-sm" # Increase the font size of the leaderboard data ) # Define the search and filter functionality inputs = [ search_bar, filter_columns_size ] outputs = leaderboard_table search_bar.change( fn=lambda query, param_ranges: update_table(leaderboard_df, query, param_ranges), inputs=inputs, outputs=outputs ) filter_columns_size.change( fn=lambda query, param_ranges: update_table(leaderboard_df, query, param_ranges), inputs=inputs, outputs=outputs ) gr.Markdown(""" **UGI: Uncensored General Intelligence**. A measurement of the amount of uncensored/controversial information an LLM knows. It is calculated from the average score of 5 subjects LLMs commonly refuse to talk about. The leaderboard is made of roughly 60 questions/tasks, measuring both "willingness to answer" and "accuracy" in controversial fact-based questions. I'm choosing to keep the questions private so people can't train on them and devalue the leaderboard. **W/10:** A more narrow, 10-point score, solely measuring the LLM's Willingness to answer the most controversial questions. A high UGI but low W/10 could mean for example that the model can provide a lot of sensitive information, but will refuse to form the information into a malicious argument.